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Technical Requirements of Carbon Sequestration Assessment for Terrestrial |

Ecosystems from the Energy Independence and Security Act of 2007 J
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Alaska Land Carbon Assessment Methodology

input data:

* Soll carbon

* Permafrost distribution

* Active layer thickness

* Vegetation carbon

* Historical forest harvest

* Future forest management
* Land cover distribution

* Fire disturbance

* Wetland distribution

* Surface water distribution
* Historical climate

* Future climate

* Upland biogeochemistry

* Wetland blogeochemistry
* Lateral carbon transport

* Surface water C emissions
* Burial of C in surface water

ecosystems

* Vegetation
dynamics

* Fire dynamics
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Modeling Framework: Uplands and Wetlands
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What is the Integrated Ecosystem Model
(IEM) for Alaska and Northwest Canada®?
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What is the IEM?

Air Temperature, Precipitation, Initial Vegetation
Snow Water
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What is the IEM?
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What is the IEM?
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Climate Drivers
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Mean Annual Temperature (MAT) and Annual Sum of Precipitation (ASP) from
1950 to 2100 summarized for the simulation extent. The black line represents the
CRU data for the historical period and the colored lines represent the CCCMA
(solid) and ECHAMS5 (dotted) projections for the 3 emission scenarios.
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Reporting Regions in Alaska

The total area of Alaska considered in this assessment was 1,474,844 kmZ2, which is
composed of 84 percent “uplands”, 12 percent wetlands, and 4 percent inland waters.

Landscape Conservation Cooperatives Main Hydrologic Units
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Evaluation of ALFRESCO Simulations of Fire Dynamics

Cumulative Area Burned : Barzal Cusmulative Bum ws, Fira Size - Bareal

4 00000

a
¥
L 2 i
- £
0o 3 frel;
B a@ NLFEES
£ 3 3 = Bars! Bor
: < ; — Bl i
g3 g “be
- 0 &
9 g' 7]
L 3
£ 5
L] O 2
3
= [=}
3
0 &

[=]

a

2500 5000 TS0
Fira Siza Ik

Cumulative area burned (km?) through time (left) and vs. individual fire size
(right). Record of observation 1950-2010 indicated by the red line. Individual
model simulations (n=200) indicated by gray lines. Projections through 2099
are for the CCCMA A1B climate scenario.
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Disturbance regimes : Fire
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Simulated fire scars for the historical period
1950-2009. Individual fire scar colors indicate
age of burn from oldest (red) to youngest

Cumulated area burned for the historical period
(black line) are estimated from the Alaskan Large
Fire Database. Projections from 2009 to 2100 are

@ simulated by ALFRESCO for the 6 climate
g SGS scenarios.
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Vegetation Change: Northern
Northwest Boreal LCC
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Evaluation of Permafrost Distribution Estimates by DOS-TEM
Presence-absence of near-surface (within 1 m) permafrost for
Alaska: a) STATSGO, b) Pastick et al., (2015); c) Geophysical
Institute Permafrost Lab (GIPL) 2.0, and; d) DOS-TEM.
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Evaluation of Soil Carbon Estimates by DOS-TEM
Soil organic carbon characterization by Landscape Conservation
Cooperative (LCC) and land cover class.
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Evaluation of DOS-TEM Performance
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TEM soil C stocks compared with soil C stocks
based on 315 samples collected in Alaska
(Johnson et al. 2011). Both simulated and
observed soil C stock estimates are for the
organic and 0-1m mineral horizons.
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Historical change in Net Ecosystem
C balance [1950-2009] in Terrestrial Boreal Alaska

A A
NPP Fire
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RH | CH,
A VEGC 73.11 0.6
-2.6
Litter
88.5
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-5.3
Unit = TgC/yr

Cumulated NECB (gC/m2Ar)

-7.9 TgC/yr were lost on average between 1950 and
2009 in Interior Alaska.

The loss over the 60 year period is primarily driven by
unprecedented fire emissions during the decade of
2000s (record fire years in 2004 and 2005).
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Estimates of Carbon Fluxes from Inland Waters of Alaska

coastal C transport by rivers (upper left), carbon dioxide emission
from rivers (upper right), carbon dioxide emissions from lakes
(lower left), and C burial in lakes (lower right)

A.Riverine lateral carbon fluxes to coastal waters

B. Riverine carbon dioxide emissions
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Historical change in Net Ecosystem C balance [1950-2009]
Including Inland Surface Waters (Rivers and Lakes)
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We estimated that 3.7 Tg C per year was
sequestrated in terrestrial ecosystems. Analysis
of aquatic fluxes suggests that uptoan 41.2 Tg
C per year could be lost from surface water of
Alaska.
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Projections of Alaska
Future Carbon Storage [2010-2100]

Projected Carbon Balance (Tg C/ yr) and Greenhouse Gas Warming Potential (GWP, Tg
CO, eq/yr) of Terrestrial Ecosystems in the Northern Northwestern Boreal LCC

Climate Delta Delta
Scenario VEGC SOILC

FireC BioCH; NECB GWP

CCCMA B1 6.2 20.5 278.2 -219.9 -30.4 -1.1 26.8 -62.4
ECHAMS B1 9.8 8.5 282.3 -222.4 -40.3 -1.3 18.2 -24.5
CCCMA A1B 10.2 21.9 306.6 -168.7 -103.4 -1.9 32.2 -51.0
ECHAMS A1B 12.5 11.7 323.3 -190.5 -106.5 -1.6 24.3 -31.2
CCCMA A2 6.8 25.6 292.6 -232.0 -25.1 -1.1 34.4 -91.6
ECHAMS A2 12.6 8.9 324.1 -176.9  -122.7 -2.7 21.4 11.6

Unit = TgC/yr



Take home messages on the historical
assessment of C dynamics in Alaska

Upland and wetland Ecosystems of Alaska are estimated to have gained 3.7 Tg C
per year from 1950 to 2009, which is ~2% of NPP, but sequestration is spatially
variable with the northern Northwest Boreal region losing carbon.

We estimate that the combined carbon loss through various pathways of the
inland aquatic ecosystems of Alaska was 41.2 Tg C per year, or about 17 percent of
upland and wetland NPP.

We estimate that the greenhouse gas forcing potential of upland and wetland
ecosystems of Alaska was approximately neutral during the historical period, but
that the state as a whole could be a source for greenhouse gas forcing to the
climate system from CH, emissions from lake ecosystems.

A major uncertainty of the historical assessment is related to the fact that aquatic
inland ecosystems were not able to be integrated with upland and wetland
ecosystems.



Take home messages on the projected
C dynamics for Alaska

During the projected period (2010-2099), carbon sequestration of
upland and wetland ecosystems of Alaska would increase
substantially (18.2 to 34.4 Tg C per year) primarily because of an
increase in NPP of 8 to 19 percent associated with responses to
rising atmospheric CO,, increased nitrogen cycling, and longer
growing seasons. Although C emissions to the atmosphere from
wildfire increase substantially for all of the projected climates, the
increases in NPP more than compensate for those losses.

Our analysis indicates that upland and wetland ecosystems would be sinks
for greenhouse gases for all scenarios during the projected period.
However, as in the case of the analysis of the historical period, there is
uncertainty as whether the state would be a net source for GHG if
emissions of CH, from lakes in Alaska were considered.
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ldentifying Indicators of State Change and
Forecasting Future Vulnerability in
the Alaskan Boreal Forest

e Technical Objective 2. Develop models that can
forecast landscape change in response to projected
changes in climate, fire regime, and fire management.



$SERDP

DOD = EPA = DOE

SERDP Project Modeling
Objectives

e Question 1: How does simulated fire frequency respond to
different climate scenarios during the 215t Century on, and
adjacent to, military lands of the Upper Tanana Hydrologic
Basin?

e« Question 2: How might changes in the fire management
options within military training land boundaries influence the
frequency and extent of wildfire activity on, and adjacent to,
military lands in the Upper Tanana Hydrologic Basin during
the 215t Century?

e Question 3: How might wildlife (e.g., moose) habitat
suitability change on military lands in the Upper Tanana
Hydrologic Basin through the 218t Century?



$SERDP

DOD = EPA = DOE

Mean Annual Area Burned (%) from 1988-2012

Critical Full  Modified Limited

Mean 0.24 0.69 1.43 1.64
Standard deviation 1.14 1.75 4.28 2.88
Median 0 0.03 0.03 0.41

Calef et al. 2015 Earth Interactions
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DOD = EPA = DOE

Model Simulation Scheme

. “Natural” Fire Regime : Fire Management Options c

1900 1980 2100

Natural” Fire Regime : FMO I New Management .

1900 1980 2013 2100
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