HRRR Model Forecasts of Convective Outflows Near Fires

• High Resolution Rapid Refresh model
 • Operational in CONUS, still Experimental in Alaska
 • 3 km grid spacing (1.9 million points in CONUS)
 • Run hourly to produce 18 hour forecasts
 • Advanced data assimilation

• Work Underway
 • Continental U.S.: Brian Blaylock
 • Alaska: Taylor McCorkle

• Extensive info online already
 • http://meso1.chpc.utah.edu/jfsp_convective/
Objectives and Research Questions

• Investigate the impacts of convective outflows on fire behavior

• Evaluate the ability of the High Resolution Rapid Refresh (HRRR) model to forecast the characteristics of such mesoscale atmospheric boundaries in the continental U.S. and Alaska

• Can the HRRR facilitate nowcasting at lead teams less than 6 h and improve situational awareness regarding convective outflows at lead times less than 24h?

• What are relevant indicators of potential fire behavior based on HRRR forecasts and how can those be communicated effectively?
Operational characteristics of outflow events

- Past events
 - 2015 Alaska season
 - 2017 Season
 - Brianhead, UT
 - Napa, CA
 - Thomas, CA

- Focus on 2018 events:
 - Operational HRRR models in Alaska and continental U.S.
 - GOES-17 available
 - Global Precipitation Mission (GPM) precipitation in Alaska
Lots of Forecasts

- Hourly updates for each of 15 hours.
- Visualizing them and interpreting the visualizations on a timely basis will be key
- Can it forecast when and where?
Real Time Products

Any grid point and current fires

Who will be go-to for access and interpretation of forecasts?
Next steps

• Validating GPM rainfall in Alaska (Taylor)
• Monitor fire cases as fire season progresses in CONUS and AK
• Your Interest?
 • Check back periodically for info posted at:
 • http://meso1.chpc.utah.edu/jfsp_convecive/
 • Try out HRRR visualizations available from:
 • http://hrrr.chpc.utah.edu/