1) Simulation of Forecast-Based Interventions to Reduce the Health and Economic Burden During a Wildfire Episode

and

2) Estimating Smoke Burden and Novel Tools to Manage Impacts in Population

Prepared by: Ana G. Rappold
April, 2015
Case Study: Impacts of smoke exposure on human health in rural communities of North Carolina

- 2008 Pocosin Lakes Wildlife Refuge Wildfire
- 2011 Pains Bay Wildfire

Photo Credit: USFWS
Daily Counts of Asthma ED Visits

2008 Pocosin Lakes National Wildlife Refuge Peat Fire

![Graph showing daily counts of asthma ED visits with peak exposure from 11 June to 21 June.]

- **First day of flaming**: 1 June
- **3 days of high exposure**: 11 June to 21 June

Exposed Counties / Satellite AOD

Rappold AG et al. Environ. Health Perspectives 2011
Percent change in cumulative RR by discharge diagnosis category for exposed and referent counties.
Economic Value of Health Burden

Environmental Benefit Mapping and Analysis Program (BenMAP)

2008 Pocosin Lakes National Wildlife Refuge Peat Fire

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Health Outcomes</th>
<th>Age Group (years)</th>
<th>Excess Incidence (95% CI)</th>
<th>Value in 2010 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature Mortality</td>
<td>Mortality</td>
<td>0-99</td>
<td>4.4 (0, 12)</td>
<td>$42 M (0, 190)</td>
</tr>
<tr>
<td>Chronic Illness</td>
<td>Nonfatal heart attacks</td>
<td>>18</td>
<td>31 (7.9, 56)</td>
<td>$3.9 M (.58, 9.8)</td>
</tr>
<tr>
<td>Hospital Admissions</td>
<td>Cardiovascular Hospital Admissions*</td>
<td>18-64</td>
<td>4.3 (2.3, 6.4)</td>
<td>$180K (91, 260)</td>
</tr>
<tr>
<td></td>
<td>Respiratory Hospital Admissions**</td>
<td>18-64</td>
<td>4.7 (-3.0, 9.8)</td>
<td>$150K (-96, 310)</td>
</tr>
<tr>
<td></td>
<td>Asthma ED visits</td>
<td>All ages</td>
<td>16 (-4.4, 33)</td>
<td>$6.7K (-1.9, 15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health Outcomes</th>
<th>Age Group (years)</th>
<th>Excess Incidence (95% CI)</th>
<th>Value in 2010 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Bronchitis</td>
<td>8-12</td>
<td>41 (-9.8, 91)</td>
<td>$20K (-4.2, 56)</td>
</tr>
<tr>
<td>Lower Respiratory Symptoms</td>
<td>7-14</td>
<td>530 (200, 850)</td>
<td>$11K (3.2, 23)</td>
</tr>
<tr>
<td>Upper Respiratory Symptoms in asthmatics</td>
<td>9-11</td>
<td>760 (140, 1400)</td>
<td>$25K (3.7, 62)</td>
</tr>
<tr>
<td>Asthma Exacerbations, Asthma Attacks</td>
<td>6-18</td>
<td>810 (-94, 1,900)</td>
<td>$47K (-5, 140)</td>
</tr>
<tr>
<td>Minor Restricted Activity Days</td>
<td>18-65</td>
<td>22 (18, 27) x 1000</td>
<td>$1.5M (-.8, 2.3)</td>
</tr>
<tr>
<td>Work Loss Days</td>
<td>18-65</td>
<td>3.7 (3.2, 4.3) x 1000</td>
<td>$0.52M (440, 600)</td>
</tr>
</tbody>
</table>

5 Rappold AG et al. Environ. Sci & Technologies, 2014
Can we reduce health impacts in communities?

We simulated forecast-based interventions in population using forecast predictions of PM$_{2.5}$ from NOAA’s Smoke Forecasting System and asked:

1) Can forecasts of PM$_{2.5}$ predict the observed association between PM$_{2.5}$ and health outcomes?

2) If we reduced exposures according to the forecasts do we observe a corresponding reduction in health effects?
Forecast Based Interventions for Asthma and Congestive Heart Failure ED visits

NOAA’s Smoke Forecasting System predictions of PM$_{2.5}$ in forecast and re-analysis mode:

9 interventions defined by combination of

3 smoke levels: Low (5µg/m3), Intermediate (20µg/m3), High smoke (50µg/m3) and

3 adherence levels: Good (5µg/m3), Moderate (20µg/m3), and Poor (50 µg/m3)
1) Can forecasted concentrations of PM$_{2.5}$ predict the observed association with health outcomes?

Asthma related ED visits

Observed association using **re-analysis** as a measure of presumed true exposure

Association using **forecasted** concentrations of PM

Yes! Forecasted PM$_{2.5}$ levels are predictive of the observed associations

% change per 10 $\mu g/m^3$ of PM$_{2.5}$

<table>
<thead>
<tr>
<th>Without Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-analysis</td>
</tr>
<tr>
<td>Forecast</td>
</tr>
</tbody>
</table>
2) If we reduced exposures according to the forecasts would we observe a corresponding reduction in health effects?

Counties implementing intervention reduce the average exposure to 5µg/m³-GOOD, 25µg/m³-Moderate, 50µg/m³-POOR.
2) If we reduced exposures according to the forecasts would we observe a corresponding reduction in health effects?

Implementing interventions at “High Smoke” only does not improve health outcomes.
How accurately did the forecast based interventions predict the re-analysis based predictions?

<table>
<thead>
<tr>
<th></th>
<th>Low Smoke Level $T_i=5$</th>
<th>Intermediate Smoke Level $T_i=20$</th>
<th>High Smoke Level $T_i=50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Positive Rate</td>
<td>3.7%</td>
<td>3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>(1- specificity)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Predictive</td>
<td>81%</td>
<td>68%</td>
<td>57%</td>
</tr>
<tr>
<td>Value (Precision)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>74%</td>
<td>74%</td>
<td>76%</td>
</tr>
<tr>
<td>(True Positive Rate)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The example above was for one fire alone, but Fires are many and Fires impact many. Is there a potential for use of forecasting methods in the Public Health domain?
Estimating fire smoke related health burden and novel tools to manage impacts on urban populations, JFSP 2014

Brian Reich, PI, Department of Statistics, North Carolina State University

Co-Pis:
Richard Broome, The New South Wales Department of Health, AU, Director
Martin Cope, The Commonwealth Scientific and Industrial Research Organization, AU
Neal Fan, US EPA, Policy Analyst, BenMAP
Fay Johnson, University of Tasmania, Menzies Research Institute, AU, Epidemiology/MD
Geoffrey Morgan, University of Sydney, University Centre for Rural Health, NSW, AU, Epidemiologist
Ana Rappold, US EPA, Statistician
Estimating fire smoke related health burden and novel tools to manage impacts on urban populations, JFSP 2014

The goal of the project is to

- Characterize smoke exposure in US and AU (composition and concentrations)
- Characterize the overall health and economic impact in population
- Develop tools for predicting health impacts in real time (calibration of smoke predictions and linkage to BenMAP) -- to leverage current information about the health effects from smoke exposures and other sources of air pollution with public health tools (AQI, AirNOW) and provide information to individuals – particularly those at risk- in real time.

HYSPLIT PM2.5 forecast and expected increase in cases of asthma aggravation from BENMAP-CE for June 12, 2008, Evans Road Fire North Carolina.
• The content of the presentation does not necessarily represent the views or policy of the Environmental Protection Agency.

• The NC DETECT Data Oversight Committee does not take responsibility for the scientific validity or accuracy of methodology, results, statistical analyses, or conclusions presented.
Thank you

Ana G. Rappold
Environmental Public Health Division
ORD/National Health Environmental Effects Laboratory
U.S. Environmental Protection Agency
Email: rappold.ana@epa.gov