Air Quality and Visual Range – A Story

Wildland Fire Smoke Health Effects Research and Tools to Inform Public Health Policy and Recommendations

April 2015, Boise, Idaho

Susan O’Neill, USDA Forest Service
Visual Range and PM2.5

What do you do when you know the atmosphere is smokey but you don’t have a PM2.5 measurement?

24-hr Measurement – can compare to the NAAQS

But what do you do in the case of wildfires when smoke can vary a lot hour by hour?
Visual Range and PM2.5
- Steps -

1) Human-sighted Visual Range (VR)
2) VR -> PM2.5 (1-3 hr avg)
3) PM2.5 (1-3 hr avg) -> Recommended Action

Uncertainties associated with each step.
What is Visual Range?

Visual Range has been defined in the context of how far away a black object has to be such that it is just noticeable or visible (Malm and Schichtel, 2013).
Montana – Circa turn of the Century (2000)

- Correlated 1-hr PM2.5 concentrations with ASOS data
- Helena, Montana during a period of wildfire impacts
- Low Relative Humidity
- PM2.5 * VR = 450

Breakpoints and Associated Visibility for Particulate Concentrations

<table>
<thead>
<tr>
<th>Health Effect Categories</th>
<th>Visibility (miles)</th>
<th>24-Hour BAM (ug/m3) 1</th>
<th>8-Hour BAM (ug/m3) 2</th>
<th>1-Hour BAM (ug/m3) 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous</td>
<td>< 1.3</td>
<td>> 135.4</td>
<td>> 193.4</td>
<td>> 338.5</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>2.1 - 1.3</td>
<td>80.5 - 135.4</td>
<td>115.0 - 193.4</td>
<td>201.1 - 338.5</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>5.0 - 2.2</td>
<td>35.5 - 80.4</td>
<td>50.7 - 114.9</td>
<td>88.6 - 201.0</td>
</tr>
<tr>
<td>Unhealthy for Sensitive Groups</td>
<td>8.7 - 5.1</td>
<td>20.5 - 35.4</td>
<td>29.2 - 50.6</td>
<td>51.1 - 88.5</td>
</tr>
<tr>
<td>Moderate</td>
<td>13.3 - 8.8</td>
<td>13.5 - 20.4</td>
<td>19.2 - 29.1</td>
<td>33.6 - 51.0</td>
</tr>
<tr>
<td>Good</td>
<td>> 13.4 +</td>
<td>0.0 - 13.4</td>
<td>0.0 - 19.1</td>
<td>0.0 - 33.5</td>
</tr>
</tbody>
</table>

2. Applied U.S. EPA SCREEN adjustment factor for 8-hour, 0.7, multiplied to the 24-hour PM-2.5 Pollutant Standards Index.
Wildfire Smoke
A Guide for Public Health Officials
Revised July 2008
(With 2012 AQI Values)

<table>
<thead>
<tr>
<th>Air Quality Index Category</th>
<th>PM2.5 or PM10 Levels (µg/m³, 1- to 3-hr avg.)</th>
<th>PM2.5 or PM10 Levels (µg/m³, 8-hr avg.)</th>
<th>PM2.5 or PM10 Levels (µg/m³, 24-hr avg.)</th>
<th>Visibility - Arid Conditions (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0 – 38</td>
<td>0 – 22</td>
<td>0 – 12</td>
<td>> 11</td>
</tr>
<tr>
<td>Moderate</td>
<td>39 – 88</td>
<td>23 – 50</td>
<td>12.1 – 35.4</td>
<td>6 – 10</td>
</tr>
<tr>
<td>Sensitive Groups</td>
<td>89 – 138</td>
<td>51 – 79</td>
<td>35.5 – 55.4</td>
<td>3 – 5</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>139 – 351</td>
<td>80 – 200</td>
<td>55.5 – 150.4</td>
<td>1.5 – 2.75</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>352 – 526</td>
<td>201 – 300</td>
<td>150.5 – 250.4</td>
<td>1 – 1.25</td>
</tr>
<tr>
<td>Hazardous</td>
<td>≥ 526</td>
<td>> 300</td>
<td>> 250.5 - 500</td>
<td>≤1</td>
</tr>
</tbody>
</table>
Short Term (1-3 hr) Air Quality Categories

1-3 hr PM2.5 Concentration (µg/m³)

- Hazardous
- Very Unhealthy
- Unhealthy, High
- Unhealthy for Sensitive Groups
- Moderate
- Good

Canada AQHI, Wildfire Smoke Guide, AK, CO, MT, Manitoba*
Discussion

- National Wildfire Coordinating Group (NWCG) Smoke Committee (SmoC)
- Concerns:
 - Consequences of a human-sighted visual range
 - Multiple Approaches Currently in-use
 - Need for a Short-Term (1-3 hr) Health Impact Index
 - Influence of relative humidity, aerosol hygroscopicity, and other anthropogenic sources on the VR/PM2.5 relationship for smoke-filled atmospheres
Great Smoky Mountains National Park

RH = 30%
VR = 47 km
PM$_{2.5}$ = 21 µg/m3

WINHAZE Program
IMPROVE Data

RH = 90%
VR = 19 km
PM$_{2.5}$ = 21 µg/m3
IMPROVE Light Extinction (β_{ext}) Equation

$$\beta_{ext} = 2.2 \times f_s(RH) \times [\text{Small Sulfate}]$$
$$+ 4.8 \times f_l(RH) \times [\text{Large Sulfate}]$$
$$+ 2.4 \times f_s(RH) \times [\text{Small Nitrate}]$$
$$+ 5.1 \times f_l(RH) \times [\text{Large Nitrate}]$$
$$+ 2.8 \times [\text{Small Organic Mass}]$$
$$+ 6.1 \times [\text{Large Organic Mass}]$$
$$+ 10 \times [\text{Elemental Carbon}]$$
$$+ 1 \times [\text{Fine Soil}]$$
$$+ 1.7 \times f_{ss}(RH) \times [\text{Sea Salt}]$$
$$+ 0.6 \times [\text{Coarse Mass}]$$
$$+ \text{Rayleigh Scattering (Site Specific)}$$
$$+ 0.33 \times [\text{NO}_2 \text{ (ppb)}]$$

$$\beta_{ext} = \frac{K}{VR}, \text{ where, } K = \text{the Koschmieder Coefficient, } 3.9$$
$PM_{2.5} = \frac{622}{VR}$

$r^2 = 0.998$
<table>
<thead>
<tr>
<th>VR (miles)</th>
<th>VR (km)</th>
<th>RH 10%</th>
<th>RH 20%</th>
<th>RH 30%</th>
<th>RH 40%</th>
<th>RH 50%</th>
<th>RH 60%</th>
<th>RH 70%</th>
<th>RH 80%</th>
<th>RH 90%</th>
<th>RH 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>
Joint Fire Science Program Project

- Bill Malm and Bret Schichtel
 Cooperative Institute for Research in the Atmosphere (CIRA) and the National Park Service (NPS) Air Resource Division

- 7 Goals, some of which are:
 - Quantify uncertainties in estimating VR, and PM2.5 from a VR
 - Make recommendations for the form of the VR*PM relationship
 - Examine how the VR/PM2.5 relationship may change as a function of season and location
Quantification of Uncertainty

When the target is not black

- Uncertainty = 0.15 (for green/forested target)
- Uncertainty is higher for lighter colored surfaces such as red or white

Malm and Schichtel, 2013
Quantification of Uncertainty

Observer judging when a target is at a threshold constant

- Uncertainty = 0.2 – 0.3

Malm and Schichtel, 2013
Quantification of Uncertainty

Non-uniform aerosol distribution between the observer and the target

Uncertainty = 0.5

Malm and Schichtel, 2013
Quantification of Uncertainty

Uncertainty in the wet mass extinction efficiency (effects of RH)

- Uncertainty = 0.7 – 1.0
- Varies across the US

Malm and Schichtel, 2013
Conclusion

Factor of 2 uncertainty

- When smoke dominates
- Both Eastern and Western US

Malm and Schichtel, 2013
38 μg/m³

Vr=37.5 km

Vr=17.7 km

Vr=8.4 km

88 μg/m³

Vr=19.2 km

Vr=9.7 km

Vr=4.9 km

Malm and Schichtel, 2013
Smoke Photoguide, JFSP 10-1-03-2

GRAND CANYON NATIONAL PARK, AZ

CONDITION: Baseline <5 μg/m³

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 2.5</td>
<td><5 μg/m³</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>20 %</td>
</tr>
<tr>
<td>Visual Range</td>
<td>148.5 miles</td>
</tr>
</tbody>
</table>

6.6 miles

2.7 miles

6.8 miles

2.5 miles

2.2 miles
Grand Canyon National Park, AZ

Condition: 245 µg/m³

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 2.5</td>
<td>245 µg/m³</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>20% - 40%</td>
</tr>
<tr>
<td>Visual Range</td>
<td>2.3 miles</td>
</tr>
</tbody>
</table>

- 6.6 miles
- 2.7 miles
- 6.8 miles
- 2.5 miles
- 2.2 miles

WINHAZE: http://vista.cira.colostate.edu/improve/tools/win_haze.htm

Smoke Photoguide https://www.frames.gov/partner-sites/emissions-and-smoke/perceptions/smoke-examples/
Thank you!

Questions, Comments, Discussion

Susan O’Neill
smoneill@fs.fed.us
206-732-7851