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Abstract: 

The geospatial products described and distributed here depict the probability of high-severity fire, if a fire 

were to occur, for several ecoregions in the contiguous western US.  

The ecological effects of wildland fire – also termed the fire severity – are often highly heterogeneous in 
space and time. This heterogeneity is a result of spatial variability in factors such as fuel, topography, 
and climate (e.g. mean annual temperature). However, temporally variable factors such as daily weather 
and climatic extremes (e.g. an unusually warm year) also may play a key role. 

Scientists from the US Forest Service Rocky Mountain Research Station and the University of Montana 
conducted a study in which observed data were used to produce statistical models describing the 
probability of high severity fire as a function of fuel, topography, climate, and fire weather. Observed 
data from over 2000 fires were used to build individual models for each of 19 ecoregions in the 
contiguous US (see Fig. 1 below). High severity fire was measured using a fire severity metric termed the 
relativized burn ratio, which uses pre- and post-fire Landsat imagery to measure fire-induced ecological 
change. Fuel included pre-fire metrics of live fuel amount such as NDVI. Topography included factors 
such as slope and potential solar radiation. Climate summarized 30-year averages of factors such as 
mean summer temperature that spatially vary across the study area. Lastly, fire weather incorporated 
temporally variable factors such as daily and annual temperature. 

In turn, these statistical models were used to generate "wall-to-wall" maps depicting the probability of 
high severity fire, if a fire were to occur, for 13 of the 19 ecoregions. Maps were not produced for 
ecoregions in which model quality was deemed inadequate. All maps use fuel data representing the year 
2016 and therefore provide a fairly up-to-date assessment of the potential for high severity fire. For 
those ecoregions in which the relative influence of fire weather was fairly strong (n=6), two additional 
maps were produced, one depicting the probability of high severity fire under moderate weather and 
the other under extreme weather. An important consideration is that only pixels defined as forest were 
used to build the models; consequently maps exclude pixels considered non-forest. 

Users of these data should thoroughly read through this document to better understand appropriate 

uses and interpretations of the data products distributed here. 

 

mailto:sean_parks@fs.fed.us
http://iopscience.iop.org/article/10.1088/1748-9326/aab791


Figure 1. Of the 19 ecoregion analyzed, 13 performed at a level (AUC ≥0.70) in which we felt comfortable 

producing maps depicting the probability of high-severity fire. These 13 ecoregions are identified by the 

circle (any style) and the resulting predictions are a composite (i.e. and average) of 100 independent 

predictions using randomly selected fire weather. The relative influence of fire weather was ≥15% in six of 

these 13 ecoregions, which are identified by the double circle. These six ecoregions have two additional 

products, one depicting the probability of high-severity fire under moderate weather (i.e. the 50th 

percentile of the 100 independent predictions) and the other under extreme weather (i.e. the 95th 

percentile of the 100 independent predictions). See Methods for further details. 

 
 

 

Important notes about usage: 

 All mapped probabilities are conditional on a fire burning any given pixel. Simply put, these are 

the maps represent the probability of high-severity fire were a fire to occur.  

 It is not appropriate to compare severity predictions among ecoregions because each 

ecoregional model was developed independently. 

 Because the range and frequency distribution of high-severity fire probabilities are highly 

dependent on the prevalence (i.e. the proportion) of high-severity fire in each ecoregion, the 

probabilities should not be strictly interpreted based on a range of zero to one. This means users 

should not, for example, conclude that a pixel with a 0.50 probability of high-severity fire has a 

50% chance of burning at high-severity. Instead, a better interpretation are relative differences 

in probabilities within each ecoregion. For example, a pixel with a 0.40 probability fire has twice 

the likelihood of burning at high-severity compared to a pixel with a 0.20 probability. 

 

 

 

 



Files included with each ecoregional zip file:  

1. severity.prediction.mean.tif – This is the pixel-wise average of 100 independent predictions 

using randomly drawn fire weather. See Methods. This raster is available for the 13 ecoregions 

indicated in Figure 1. This is located in the ‘severity.predictions’ directory. 

2. severity.prediction.p50.tif – This is the 50th percentile prediction (independently calculated for 

each pixel) of 100 independent predictions using randomly drawn fire weather. This is intended 

to represent the likelihood of high-severity fire under moderate weather conditions. This raster 

is available for the six ecoregions indicated in Figure 1. This is located in the 

‘severity.predictions’ directory. 

3. severity.prediction.p95.tif – This is the 95th percentile prediction (independently calculated for 

each pixel) of 100 independent predictions using randomly drawn fire weather. This is intended 

to represent the likelihood of high-severity fire under extreme weather conditions. This raster is 

available for the six ecoregions indicated in Figure 1. This is located in the ‘severity.predictions’ 

directory. 

4. nonforest.mask.tif – This raster shows what was considered forest (value=0) and nonforest 

(value=1) and is provided in case users want it to produce pretty maps (given we did not make 

predictions for nonforest pixels). This is located in the ‘nonforest.mask’ directory’.  

5. ecoregion_boundary.shp – This shapefile shows the boundary for the ecoregion of interest. The 

original source is The Nature Conservancy (Olson and Dinerstein 2002). This is mostly provided 

in case users need it to produce visually appealing maps. This is located in the 

‘ecoregion.boundary’ directory. 

6. ecoregion_boundary_reverse.shp – This shapefile provides a ‘donut’ of sorts around the 

ecoregion of interest. This is mostly provided in case users need it to produce visually appealing 

maps (i.e. by masking out areas outside the ecoregion). This is located in the 

‘ecoregion.boundary’ directory. 

 

Resolution: 30 meter pixels 

 

Projection:  

Projected Coordinate System: Albers_Conical_Equal_Area 

Projection: Albers 

false_easting: 0.00000000 

false_northing: 0.00000000 

central_meridian: -96.00000000 

standard_parallel_1: 29.50000000 

standard_parallel_2: 45.50000000 

latitude_of_origin: 23.00000000 

Linear Unit:  Meter 

 

Geographic Coordinate System: GCS_North_American_1983 

Datum:  D_North_American_1983 

Prime Meridian:  Greenwich 

Angular Unit:  Degree 



Methods used to develop the severity predictions (from Parks et al. 2018. High-severity fire: evaluating 

its key drivers and mapping its probability across western US forests. Environmental Research Letters. 

13: 044037): 

 

Data 

We built a statistical model describing high-severity fire for each ecoregion in the western US; ecoregion 

boundaries were obtained from The Nature Conservancy (Olson and Dinerstein 2002) (Fig. 1). Fire 

severity was measured using the relativized burn ratio (RBR), a satellite index (resolution = 30-m) that 

differences pre- and post-fire Landsat thematic mapper (TM), enhanced thematic mapper plus (ETM+), 

and operational land imager (OLI) satellite data. The RBR has a high correspondence to field-based 

measures of severity such as the composite burn index (CBI; r2=0.71) (Parks et al. 2014a). We classified 

the RBR data into binary categories representing high-severity (RBR ≥ 298) and other severity (RBR < 

298). This threshold was based on a CBI value of 2.25 (Parks et al. 2014a), which corresponds to ≥ 95% 

canopy mortality (Miller et al. 2009). Although there is some evidence that RBR thresholds defining high-

severity can vary across the US (Parks et al. 2014a), CBI data were not available to allow identification of 

RBR thresholds for each of the 19 ecoregions. A similar thresholding approach was also used by Dillon et 

al. (2011), and high-severity fire can be considered stand-replacing fire in the context of this study. 

Satellite imagery used to generate RBR was obtained from the Monitoring Trends in Burn Severity 

program (MTBS) (Eidenshink et al. 2007), which distributes Landsat data for fires ≥ 400 ha that occurred 

since 1984. RBR was calculated using the ‘dNBR offset’, which accounts for differences due to phenology 

or precipitation between the pre- and post-fire imagery by subtracting the average delta normalized 

burn ratio (dNBR) of pixels outside the burn perimeter (Key 2006); this can be important when 

comparing severity among fires (Parks et al. 2014a).  

 

We evaluated 16 explanatory variables in the model for each ecoregion which can be categorized into 

four groups representing live fuel, topography, climate, and fire weather (Table 1). The fuel group is 

comprised of three satellite vegetation indices: NDVI, NDMI, and EVI (Table 1). These indices were 

generated using pre-fire imagery distributed by MTBS. NDVI is an index of vegetation productivity and 

biomass (Pettorelli et al. 2005). NDMI is a measure of vegetation moisture and is frequently used in 

drought monitoring, and because of its sensitivity, it is also key in assessing wildfire potential and 

severity (McDonald et al. 1998, Chu et al. 2016). EVI is another index of vegetation productivity, but 

whereas NDVI is chlorophyll sensitive, EVI is more responsive to canopy structural variations (i.e. leaf 

area index, canopy type, plant physiognomy, and canopy architecture) and may be better suited to high 

biomass regions (Huete et al. 2002). These three metrics are sensitive to changes in amounts and 

distribution of live fuel over time due to vegetation growth, disturbance, and drought (Turner 2010). 

These metrics implicitly incorporate management activities and disturbances such as fuel reduction 

treatments and wildland fire. Inclusion of ‘static’ fuel metrics such as vegetation type or cover (e.g. 

www.landfire.gov) (cf. Birch et al. 2015, Keyser and Westerling 2017) was not considered since such 

products are only updated periodically and are thus not sensitive to annual dynamics. The inclusion of 

dynamic fuel metrics allows for annual updates of the fire severity predictions while accounting for 

temporal variability in fuel.  

 

http://www.landfire.gov/


Topography is represented by four variables (resolution = 30-m): dissection index (DISS), topographic 

position index (TPI), potential solar radiation (SRAD), and slope (Slope) (Table 1). DISS is a measure of 

roughness (i.e. a ratio between relative and absolute relief), and varies between zero (absence of 

dissection, e.g. low portion of a basin) and one (e.g. vertical cliff) (Evans 1972). TPI is a measure of valley 

bottom vs. ridge top and was calculated at the 2-km scale. SRAD incorporates slope, aspect, and 

topographic shading and is a measure of insolation (Flint et al. 2004). Slope is a measure of steepness. 

These particular topographic variables are strongly linked to fire severity (Dillon et al. 2011, Birch et al. 

2015), although they most likely represent indirect processes that drive fire severity. For example, solar 

radiation (SRAD) may indirectly affect fire severity through its influence on productivity and fuel 

moisture.  

 

Climate is represented by three variables (resolution=1-km): climatic moisture deficit (CMD), reference 

evapotranspiration minus CMD, hereafter referred to as evapotranspiration (ET), and mean 

summertime temperature (June through August) (T.sm) (Table 1). These variables represent climate 

normals over the 1981-2000 time period (i.e. they do not vary annually) and were obtained from Wang 

et al. (2016) (available at https://adaptwest.databasin.org/). CMD and ET are broadly representative of 

the climatic water balance (climatic water deficit and actual evapotranspiration, respectively) 

(Stephenson 1990) but are simplifications because they exclude factors such as soil water holding 

capacity and wind speed in their calculations. As previously mentioned, these climate variables are likely 

indirect measures of fuel amount and vegetation type through their effect on productivity (e.g. Miller 

and Urban 1999, Krawchuk et al. 2009). Nevertheless, variables such as these have been identified as 

strong predictors of wildland fire in numerous studies (Parks et al. 2014c, 2018, Kane et al. 2015, 

McKenzie and Littell 2017). 

 

The fire weather group is comprised of six gridded variables, three of which represent daily variability 

(e.g. daily maximum temperature) and three of which represent annual variability (mean temperature 

for any given year) (Table 1). Our choice to use two temporal resolutions in characterizing fire weather is 

a result of research that has elucidated the importance of both daily and annual fire weather in driving 

fire severity (e.g. Abatzoglou et al. 2017, Keyser and Westerling 2017, Lydersen et al. 2017). The daily 

gridded fire weather variables (resolution=4-km) include burning index (BI.day), energy release 

component (ERC.day), and maximum temperature (Tmax.day) (Table 1). These weather variables were 

selected based on recent studies that used daily fire weather in evaluations of fire spread and severity 

(Collins et al. 2009, Birch et al. 2015, Holsinger et al. 2016). BI.day is related to the potential flame length 

and ERC.day is a metric of the potential energy released at the head of a spreading fire (Schlobohm and 

Brain 2002).  BI.day and ERC.day were calculated as described by Priesler et al. (2016) and Jolly and 

Freeborn (2017). To ensure that BI.day and ERC.day were comparable among locations, we constrained 

calculations to a single fuel model (Fuel Model G), which has a strong relationship with the occurrence 

of large fires. Tmax.day was obtained from Abatzoglou (2013). Annual fire weather variables 

(resolution=1-km) include heat moisture (HM.ann), mean temperature (Temp.ann), and climatic 

moisture deficit (CMD.ann) (Table 1). These variables represent the year in which any given fire occurred 

and were generated using the ClimateNA software package (version 5.10) (Wang et al. 2016). Several 

studies have used similar variables in evaluations of fire activity or severity (Parisien et al. 2014, 

Abatzoglou et al. 2017, Keyser and Westerling 2017).  

  

https://adaptwest.databasin.org/


Table 1. Variables used as predictors in modeling the probability of high-severity fire in forests of the 

western US. 

Group 
Variable 

name 
Description Source 

Live fuel 

NDVI 

Normalized differenced vegetation index. Calculated 

using pre-fire imagery distributed by the Monitoring 

Trends in Burn Severity (MTBS) program. 

Pettorelli et al. (2005) 

NDMI 

Normalized differenced moisture index. Calculated 

using pre-fire imagery distributed by MTBS (Eidenshink 

et al. 2007). 

McDonald et al. (1998) 

EVI 
Enhanced vegetation index. Calculated using pre-fire 

imagery distributed by MTBS (Eidenshink et al. 2007). 
Huete (2002) 

Topography 

DISS 
Dissection index with a 450 meter radius. DISS is a 

measure of topographic complexity. 
Evans (1972) 

TPI 
Topographic position index with a 2000 meter radius. 

TPI is a measure of valley bottom vs. ridge top. 
NA 

SRAD Solar radiation, as calculated using the SOLPET6 model. Flint et al. (2004) 

Slope Slope angle NA 

Climate 

CMD 
Climatic moisture deficit (Wang et al. 2016). Mean 

over the 1961-1990 time period. 

Wang et al. (2016); 

https://adaptwest.databasin.org/ 

ET 
Evapotranspiration (i.e. Eref - CMD). Mean over the 

1961-1990 time period. 

Wang et al. (2016); 

https://adaptwest.databasin.org/ 

T.sm 
Average summer temperature. Mean over the 1961-

1990 time period. 

Wang et al. (2016); 

https://adaptwest.databasin.org/ 

Fire 

weather 

BI.day 
Burning index; a measure of fire intensity. Raw value 

converted to per-pixel percentile. 

Preisler et al. (2016) 

Jolly and Freeborn (2017) 

ERC.day 

Energy release component; an index describing the 

amount of heat released per unit area at the flaming 

front of a fire. Raw value converted to per-pixel 

percentile. 

Preisler et al. (2016) 

Jolly and Freeborn (2017) 

Tmax.day 
Maximum daily temperature. Raw value converted to 

per-pixel percentile. 
Abatzoglou (2013) 

HM.ann 

Heat moisture for the year in which the fire occurred. 

HM is calculated as follows: (annual temperature + 10) 

/ (annual precipitation/1000). Raw value converted to 

per-pixel z-score. 

ClimateNA software package; 

Wang et al. (2016) 

Temp.ann 

Mean annual temperature for the year in which the 

fire occurred. Raw value converted to per-pixel z-

score. 

ClimateNA software package; 

Wang et al. (2016) 

CMD.ann 
Climatic moisture deficit for the year in which the fire 

occurred. Raw value converted to per-pixel z-score. 

ClimateNA software package; 

Wang et al. (2016) 

 

 

  



Daily weather variables were converted to daily percentiles based on 25 years of data (1990-2014) and 

on the estimated fire season for each ecoregion; that is, each 4-km pixel is assigned a daily percentile 

based on the weather values of that same pixel over the fire seasons from 1990 to 2014. We followed 

Parks et al. (2016) by defining the fire season for each ecoregion as the date range that encompassed 

90% of Moderate Resolution Imaging Spectrometer (MODIS) fire detections from 2002-2014 (USDA 

Forest Service 2016). To assign a daily weather value for each variable, it was first necessary to identify 

the day at which each pixel burned. Consequently, we generated fire progression maps using MODIS fire 

detection data using the methods developed by Parks (Parks 2014). Once the day at which each pixel 

burned was identified, daily weather percentiles specific to the day of burning were extracted for each 

burned pixel. Similarly, annual weather variables were converted to z-scores based on the record from 

1984-2015 for each 1-km pixel; annual weather z-scores were extracted for the year in which each pixel 

burned.  

 

Sampling design and statistical models 

We sampled individual 30-m pixels within fires that occurred from 2002-2014. Fires that occurred prior 

to 2002 were not sampled because MODIS data were not available; MODIS data were necessary to 

estimate day of burning and incorporate daily fire weather into our models. Each ecoregion was 

modeled separately but included an additional 10 km buffer; the buffer was intended to ensure that 

adjacent forest was also modeled in cases where ecoregion boundaries are imperfect. We only sampled 

pixels identified as forest (i.e. forest, woodland, and savanna), as defined by a combination of landscape 

level vegetation products that include Landfire’s (Rollins 2009) Existing Vegetation Cover (EVC), 

Environmental Site Potential (ESP) and the Landsat Time Series Stacks – Vegetation Change Tracker 

(LTSS-VCT) (Huang et al. 2010). From the full set of burned forested pixels, we generated an initial 5% 

random sample, but then removed all pixels <100 m from the fire perimeter to reduce edge effects 

common at fire boundaries (Stevens-Rumann et al. 2016); this resulted in a ~10% reduction in our 

samples (Appendix A). Although predictor variables ranged in resolution from 30-m to 4-km, all analyses 

and predictions were conducted using the native resolution of the response variable (30-m).  

 

For each ecoregion, we used boosted regression trees (BRT) using the ‘gbm’ package in R to model high-

severity fire (binary response) as a function of live fuel, topography, climate, and fire weather (Table 1). 

To adequately model high-severity fire, we built models only for ecoregions with at least 50,000 samples 

(this is of the initial 5% sample and excludes samples in the buffer). A handful of ecoregions were 

consequently omitted because they contained a low proportion of forest or did not have enough fire 

data (e.g. Sonoran Desert and North Cascades ecoregion, respectively) (Appendix A). BRT models were 

built using 100,000 randomly selected samples (from the initial 5% random sample) within each 

ecoregion (plus 10-km buffer). In cases where there were < 100,000 (and ≥ 50,000) available samples, 

we used all samples (from the initial 5% random sample). BRT parameters were set as follows for each 

model: learning rate=0.025, number of trees=1000, and tree complexity=2. These parameters were 

chosen based a) on the recommendations of Elith et al. (2008) and b) those that maximized the cross-

validated model fit (described below).  

 

In an effort to reduce overfitting and build the most parsimonious model for each ecoregion, we 

employed a cross-validated stepwise procedure in which specific variables were removed if they did not 



provide unique information that improved model fit. Models for each ecoregion were evaluated with 

five-fold cross validation that was spatially and temporally structured such that 20% of fires (as opposed 

to pixels) within an ecoregion were held out in each iteration. Specifically, we built a model for each 

ecoregion using the full suite of variables (Table 1) and evaluated it with the area under curve (AUC) 

statistic derived from the receiver operating characteristic curve as measured with the ’verification’ 

package in R; the AUC was averaged over the five folds. We then built an additional set of models for 

each ecoregion in which each explanatory variable was removed and calculated the AUC as previously 

described. If the cross-validated AUC increased when any given variable was removed from the model, it 

indicates that the model is overfit and that the variable does not provide any unique information in 

explaining high-severity fire. In these cases, the variable that resulted in the largest increase in AUC was 

permanently removed and the process was repeated until all variables resulted in a decreased AUC 

when removed from the model. As such, all variables in the final models provided unique information in 

terms of explaining high-severity fire. Given strong autocorrelation in fire severity data (Parks et al. 

2014b, Kane et al. 2015), this approach was much more conservative and arguably more appropriate in 

terms of evaluating model fit compared to validations that do not hold out truly independent data (i.e. 

data from fires not used to build the models). This approach to variable selection also ensured that our 

models are spatially and temporally transferable, which is important given our desire to map predictions 

(objectives 2 and 3). 

 

Once the final model for each ecoregion was identified, the relative importance of variable groups was 

calculated using the AUC of a five-fold cross validation using a process that excluded all variables from a 

particular group. Specifically, we compared the five-fold cross validated AUC of the full model to models 

that iteratively excluded all variables representing live fuel, topography, climate, and fire weather. 

Relatively small decreases in AUC (compared to the full model) for any particular variable group were 

interpreted as having less influence compared to variable groups that resulted in larger decreases in 

AUC. The specific equation was as follows: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑖 =  
𝐴𝑈𝐶. 𝑓𝑢𝑙𝑙 − 𝐴𝑈𝐶. 𝑛𝑜. 𝑣𝑎𝑟𝑖

∑ (𝐴𝑈𝐶. 𝑓𝑢𝑙𝑙 − 𝐴𝑈𝐶. 𝑛𝑜. 𝑣𝑎𝑟𝑖
𝑖=4
𝑖=1 )

 × 100 

 

Where AUC.full was the AUC of the full model, AUC.no.var was the AUC of the model excluding any 

particular variable group, and i represented one of the four variable groups.  

 

Model implementation and map production 

From these BRT models, we produced wall-to-wall raster maps (objective 2) depicting the probability of 

high-severity fire, if a fire were to occur, for each ecoregion in which the cross-validated AUC ≥0.70. We 

reasoned that the uncertainty in some models (i.e. those with an AUC <0.70) would potentially result in 

low-quality maps because the prevalence of true-positives is not much greater than the false positives 

when AUC <0.70 (Swets 1988). For the fuel inputs (NDVI, NDMI, and EVI), satellite imagery from 2016 

spanning the entirety of each ecoregion was obtained using Google Earth Engine (GEE; 

https://developers.google.com/earth-engine/). Consequently, these raster predictions represent fairly 

current fuel conditions across each ecoregion. Predictions theoretically range from zero to one and 

depicted the probability of high-severity fire. 



 

We aimed to produce these severity predictions representing the average weather conditions under 

which fires burn. This is somewhat challenging, however, given that weather is spatially and temporally 

dynamic. Consequently, we produced 100 initial predictions and varied the weather for each of these 

predictions; all other inputs across each ecoregion (fuel from 2016, topography, and climate) were held 

static. To vary the weather, we randomly selected 100 records from our fire severity datasets. Each 

record represents one burned pixel with a unique combination of daily and annual fire weather; this 

approach preserved the covariance among the observed fire weather variables. We used the observed 

fire weather from each random record for each of the 100 initial predictions. Each weather value was 

assigned to the entire ecoregion for each of the 100 initial predictions. We then averaged the 100 initial 

predictions over each 30-m pixel, resulting in one raster map depicting the probability of high-severity 

fire under average weather conditions in which fires burn. An important consideration here is that the 

severity predictions do not represent ‘average weather conditions’, but the ‘average weather conditions 

under which fire burn’. That is, because fires often burn under more extreme fire weather, our 

predictions implicitly incorporate weather associated with high fire activity. This consideration also 

pertains to our mapped predictions under moderate and extreme fire weather, as described in the next 

paragraph. For those ecoregions in which the relative importance of weather was zero (n=2; but see 

Discussion), the process was much simpler since we only needed one prediction using fuel from 2016, 

topography, and climate as inputs.  

 

For those ecoregions in which the relative influence of fire weather ≥15%, we produced two additional 

raster maps, one depicting the probability of high-severity fire under conditions representing moderate 

weather and the other under conditions representing extreme weather. To do so, we calculated the 50th 

and 95th percentile for each pixel out of the 100 previously described initial predictions. While these 

maps represent the 50th and 95th percentile in predicted outcomes for each pixel, we use them to 

represent the outcomes of moderate and extreme fire weather, respectively. Neither says anything 

specific about the percentile of weather conditions under which they occurred, but they can be 

interpreted as resulting from moderate and extreme fire weather conditions. We did not produce 

mapped predictions under conditions representing moderate and extreme weather when the relative 

influence fire weather was <15% because we would not expect to see substantial differences between 

the two predictions. Said another way, if fire weather has a fairly low relative importance, it is not 

prudent to produce maps under various weather scenarios.  

 

While it would be ideal to use specific percentiles of our fire weather variables to represent moderate 

vs. extreme conditions, we could not do this because of complex interactions among them. For example, 

extreme fire behavior is known to occur during periods of high temperature, but may also occur during 

periods of low temperature but high winds (resulting in high BI.day); this is fairly common when cold 

fronts pass through a region. Furthermore, some fire weather variables may be more important in 

particular ecoregions, and a detailed assessment of individual weather variables was beyond the scope 

of this study. We felt that using randomized weather observations, which preserved the covariance 

among the observed fire weather variables, along with the 50th and 95th percentile high-severity fire 

predictions, provided for an unbiased and consistent approach to modelling severity representative of 

moderate and extreme fire weather. This approach is similar to that of Finney et al. (2011). 



 

To illustrate how our models can potentially be used to monitor changes in the probability of high-

severity fire due to fuel treatments (objective 3), we made pre- and post-treatment predictions using 

the BRT model from the Arizona – New Mexico Mountains ecoregion. We obtained imagery 

representing the live fuel variables using GEE for the years 2007 (pre-treatment) and 2011 (post-

treatment); fuel treatment data (location and type) were obtained from Landfire (Rollins 2009; 

www.landfire.gov). Again, we produced two sets of predictions for each time period (pre- and post-

treatment) representing moderate and extreme fire weather, as previously described.  
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