

INTERAGENCY FUELS TREATMENT
DECISION SUPPORT SYSTEM SOFTWARE

DESIGN SPECIFICATIONS

Software Specifications
STI-909029.03-3664-SS

By:

Neil J. M. Wheeler
Judd E. Reed

Kevin D. Unger
Sean M. Raffuse

Steven A. Ludewig
Tami H. Funk
Eric A. Gray

Sonoma Technology, Inc.

1455 N. McDowell Blvd., Suite D
Petaluma, CA 94954-6503

Prepared for:
The Joint Fire Science Program
3833 South Development Avenue

Boise, ID 83705

May 21, 2010

ACKNOWLEDGMENTS

Many individuals have contributed to the Interagency Fuels Treatment Decision Support
System (IFT-DSS) software development effort. We are greatly appreciative of the support and
guidance provided by John Cissel, the Joint Fire Science Program (JFSP) program manager.
Erik Christiansen, Chair of the Fuels Management Committee (FMC), provided key help and
support for analyzing the fuels treatment process that specialists from all agencies struggle with.
The JFSP Fuels Treatment Working Group (FTWG)—Michael Beasely, Dennis Dupuis, Mark
Finney, Glen Gibson, Randi Jandt, David Peterson, Tessa Nicolet, and Brad Reed—has guided
our work and represented the first line of critique and innovative ideas for the project. The JFSP
Software Tools and Systems Study Advisory Committee—Pat Andrews, Nate Benson, Mike
Hilbruner, Mike Hutt, David Peterson, Carol Saras, Paul Schlobohm, Shari Shetler, and Tim
Swedberg—has kept the study headed in the right direction and made sure that all the various
components of a successful solution were considered.

We would like to specifically acknowledge the fuels treatment specialists who have
agreed to participate in this effort to serve as the IFT-DSS proof of concept (POC) Test User
Group—Brad Reed, Brenda Wilmore, Eric Miller, Gary Curcio, Gary Fildes, Gwen Lipp, Jim
Roessler, Jon Wallace, Jonathan Olsen, Karen Folger, Mack McFarland, Nikia Hernandez, Perry
Grissom, Randi Jandt, Randy Stiplin, Scott Weyenberg, Sean McEldery, Tessa Nicolet, Alison
Forrestel, Brian Sorbel, Daniel Rasmussen, Dennis Fiore, Dennis Page, Glenn Gibson, Jeremy
Spetter, Joshua Keown, Kim Kelly, Kyle Jacobson, Loretta Duke, Mike Uebel, Sam Amato,
Anna Payne, Dave Pergolski, Jennifer Croft, Jeremy Bennet, John Washington, Ken Rodgers,
Mathew Weldon, Paul Maday, Rance Marquez, Albert Savage, William Aney, Yanu Gallimore,
Lauren Miller, and Kristen Allison—who have provided, and will continue to provide, valuable
feedback regarding the functionality and usability of the IFT-DSS. We also thank the broader
group of 49 field fuels treatment specialists who helped develop and refine the fuels treatment
decision support process.

We would like to acknowledge our appreciation of the fire and fuels science and software
development community—Eric Twombly, Mark Finney, Joe Scott, Alan Ager, and Nick
Crookston—for their cooperation and feedback related to integrating data and software
applications that will be a part of the IFT-DSS. The Fire and Environmental Research
Applications (FERA) team of Dave Petersen, Roger Ottmar, Susan Prichard, and Paige Eagle
provided support and assistance implementing new software modules into the IFT-DSS. We
would also like to acknowledge the managers of the Wildland Fire Decision Support System
(WFDSS)—Tom Zimmerman, Rob Seli, and their development team—and the BlueSky
Framework—Sim Larkin—for their willingness to work collaboratively to develop software
systems that can communicate with one another to create efficiencies in the fire and fuels
domain.

We would also like to thank the Information Technology (IT) specialists who helped
ensure that we have considered agency IT requirements—John Gebhardt, John Noneman, Laura
Hill, and Brad Harwood. All of these groups constitute the large group of stakeholders whose
jobs will be positively affected by the results of this project. It will take long-term attention and
energy from these groups of stakeholders and others, yet to be engaged, to create an effective
community of interest that will ensure that the IFT-DSS helps all of us do our jobs better.

 iii

Finally, we would like to thank the other members of Sonoma Technology’s (STI) design
and development team who contributed to the IFT-DSS design, including Liron Yahdav, Alan
Healy, Jason Amador, and Stacy Drury.

VERSION CONTROL

Draft Version 1 July 29, 2009
Draft Version 2 August 18, 2009
Draft Version 3 May 21, 2010

 iv

TABLE OF CONTENTS

Section Page

ACKNOWLEDGMENTS ... iii
LIST OF FIGURES .. vii
LIST OF TABLES... ix
GLOSSARY ..x

EXECUTIVE SUMMARY ...ES-1

1. INTRODUCTION.. 1-1
1-2

1-4

2-1
2-1
2-1
2-2

2-5
2-5
2-7

3-1
3-1

3-5
3-8

4-1
4-4
4-4
4-6

4-13
4-14
4-15
4-18
4-22
4-23
4-24

1.1 Purpose ...
1.2 Document Organization.. 1-3
1.3 IFT-DSS Naming Convention .. 1-3
1.4 References to Other Relevant Documents..

2. SYSTEM OVERVIEW..
2.1 Service Oriented Architecture ..
2.2 Rationale for a Service Oriented Architecture Approach...
2.3 IFT-DSS Users and Stakeholders ...
2.4 Overview of the Fuels Treatment Decision Support Process 2-3
2.5 Overview of the IFT-DSS Architecture..

2.5.1 Architectural Components..
2.5.2 Key Architectural Features and Functions ...

3. THE IFT-DSS USER EXPERIENCE..
3.1 Logging into the IFT-DSS..
3.2 Phase I – Project Setup and Planning ... 3-3
3.3 Phase II – Software Model Execution and Iterative Analysis
3.4 Phase III – Project Finalization, Documentation, and Archive

4. TECHNICAL SOFTWARE DESIGN ...
4.1 Components ..

4.1.1 Models ..
4.1.2 Model Adaptors ..
4.1.3 Scientific Database ..
4.1.4 Data Interface ...
4.1.5 Executive ..
4.1.6 Control Database ..
4.1.7 Navigator ..
4.1.8 Project and Planning Database ...
4.1.9 Planner Session Engine ..

 v

 vi

Section Page

4.2 Interfaces... 4-25

4-26
4-26
4-27
4-29
4-29
4-30
4-31
4-31
4-32
4-33
4-33
4-34
4-36

5-1
5-1
5-2
5-2

6-1

4.2.1 Model Data Exchange Interface ...
4.2.2 Model Control Interface ...
4.2.3 Sequencer Control and Monitoring Interface ...
4.2.4 Executive Scenario Polling and Feedback Interface
4.2.5 Executive Launching and Progress Reporting Interface
4.2.6 Map and Data Presentation Interface ...
4.2.7 Web Page Generator and Database Interface ...

4.3 Behaviors and Interactions ...
4.3.1 Project Workflow ...
4.3.2 Executive Scenario Compilation ..
4.3.3 Executive Orchestration of Model and Scientific Database Interaction
4.3.4 User Interaction with the Graphical User Interface and Database
4.3.5 User Interaction with the Web Map Service and the Scientific Database..

5. TECHNOLOGIES ...
5.1 Models and Model Adaptors ..
5.2 Scientific Database ...
5.3 Data Interface and Executive..
5.4 Planning and Control Databases... 5-3
5.5 Navigator and Planner .. 5-3
5.6 Hardware... 5-3
5.7 Future Software Topology for the IFT-DSS... 5-3

6. REFERENCES ..

LIST OF FIGURES

Figure Page

ES-1 Illustration of the five key architecture components of the IFT-DSS............................ES-3

ES-2 Overall structure of the IFT-DSS depicting the system’s major components and
software interfaces ...ES-5

1-1. Naming convention for the IFT-DSS... 1-3

2-1. Work flow diagram illustrating how the fuels treatment planning work flow
scenarios fit together from a process perspective .. 2-5

2-7

3-2

3-2

3-4

3-4

3-5

3-6

3-7

3-7

3-8

4-2

4-5

4-7

4-9

2-2. Illustration of the five key architecture components of the IFT-DSS..............................

3-1. The IFT-DSS user login screen..

3-2. The IFT-DSS POC user home page...

3-3. The “My Profile” screen where users manage their profile information......................... 3-3

3-4. The options available on a user’s home page .. 3-3

3-5. The IFT-DSS POC “Manage Projects” project list and project setup screen

3-6. The Project Details screen in the IFT-DSS..

3-7. The Run Details screen of the IFT-DSS ..

3-8. The dynamically generated tabbed navigation bar and Action Graph for a sample
modeling scenario ..

3-9. Sample outputs from FlamMap in tabular form ..

3-10. Sample outputs from FlamMap in graphical form...

3-11. Screen shot of the map viewer within the IFT-DSS GUI and the map viewer within
the IFT-DSS displaying fire behavior output data from FlamMap..................................

4-1. Overall structure of the IFT-DSS depicting the system’s major components and
software interfaces ...

4-2. Screen shot of the CDL tool...

4-3. Illustration of the three model hosting methods by which models can be integrated
into the IFT-DSS and function as services ..

4-4. UML diagram of the IFT-DSS model communication infrastructure

 vii

 viii

Figure Page

4-5. Conceptual ERD for the Control Database.. 4-19

4-20

4-21

4-22

4-24

4-32

4-33

4-34

4-35

4-36

5-4

4-6. Conceptual ERD for subset of the Control Database to facilitate efficient model
execution ..

4-7. Conceptual ERD of user interface HTML templates...

4-8. Subcomponents of the Navigator...

4-9. Conceptual ERD for Project and Planning Database...

4-10. Overview of run execution...

4-11. Swim lane diagram of the Navigator, Executive, and Control Database interaction

4-12. Swim lane diagram of Executive, Data Interface and the Scientific Database, and
models interaction..

4-13. Swim lane diagram of the user, Navigator, page creator, and control database
interaction ..

4-14. Swim lane diagram of the user, WMS, and Scientific Database interaction

5-1. Software topology for the first production release of the IFT-DSS scheduled for
release in June 2011 ...

LIST OF TABLES

Table Page

1-1. IFT-DSS naming convention during development. ... 1-4

4-10

4-11

4-12

4-15

4-17

4-27

4-28

4-1. Pseudocode for key member functions to the output stream class.

4-2. Pseudocode of the readObject member function of the input stream class.

4-3. Pseudocode of the model hosting program..

4-4. Brief pseudocode for the Executive program. ...

4-5. Pseudocode for compiler component of the Executive..

4-6. Messages between the Executive and the Model Adaptors. ..

4-7. Messages between the Executive and Data Interface. ...

 ix

GLOSSARY

TERM DESCRIPTION
API Application programming interface
Area of interest
(AOI)

For IFT-DSS, a scale-independent unit of area defined by a user.
Within an area of interest, project areas and vegetation units can be
defined for analysis. There is no minimum size unit but a maximum
unit will be limited to one million acres (approximately 400,000
hectares)

BlueSky Framework An SOA system to facilitate predictions of smoke emissions and air
quality impacts from fires

Consume A fire effects prediction model. It uses fuel loadings, fuel moisture, and
weather variables to predict fuel consumption, particulate emissions,
and heat energy released under prescribed fire and wildfire conditions.

DAG Directed Acyclic Graph (used to represent scenarios in the IFT-DSS)
.dll dynamic link library
Distributed system A system whose components can be distributed across a computer

network in geographically different locations
ERD Entity Relationship Diagram
Executive The component that compiles scenario segments and directs the

execution of models
FCCS Fuel Characteristic Classification System
FOFEM First Order Fire Effects Model; a set of fire effects prediction models.

FOFEM uses fuels and vegetation information to provide estimates of
fuel consumption, tree mortality, soil heating, and particulate emissions.

FRAMES Fire Research and Management Exchange System
FSVeg A USDA Forest Service database that contains point and plot vegetation

data from field surveys such as Forest Inventory Assessment (FIA)
exams, stand exams, forest inventories, and regeneration surveys. It
includes data for trees, surface cover, understory vegetation, and
downed woody material.

FVS The USDA Forest Service’s Forest Vegetation Simulator, a framework
for modeling forest growth

Fan-out/fan-in The maximum number of digital inputs that can be sent (fan-out) or
accepted (fan-in)

FlamMap A fire behavior mapping and analysis program that computes potential
fire behavior characteristics (spread rate, flame length, fireline intensity,
etc.) over an entire landscape for constant weather and fuel moisture
conditions.

Fuels treatment For the IFT-DSS, any mechanical, silvicultural, or burning activity
whose main objective is to reduce fuel loadings or change fuel
characteristics to lessen fire behavior or burn severity.

GIS Geographic information system

x

 xi

TERM DESCRIPTION
GUI Graphical user interface
IFT-DSS Interagency Fuels Treatment Decision Support System
I/O Input/output
Interface The programming mechanism that allows software applications to

communicate with one another
IT Information technology
JFSP Joint Fire Science Program
LANDFIRE Landscape Fire and Resource Management Planning Tools Project, a

mapping project and database of vegetation, fire, and fuel characteristics
.lcp Landscape File format
Multiplex To send multiple signals simultaneously in one complex signal and

recover the individual signals at the receiving end
NEPA National Environmental Policy Act
NEXUS Crown fire hazard analysis software that links separate models of

surface and crown fire behavior to compute indices of relative crown
fire potential.

NIFCG National Interagency Fuels Coordinating Group
NWCG National Wildfire Coordinating Group
Navigator The component that allows users to operate the system from a web

browser
POC Proof of concept
Parent class A generalized “superclass” containing specialized subclasses or “child”

classes
Project and Planning
Database

A database for storing administrative data about fuels treatment projects

Pseudocode An outline of step-by-step computer programming instructions that is
not written in a particular programming language

RDBMS Relational database management system
RPC Remote procedure call
SQL Structured Query Language, used in managing databases
STS Study Software Tools and Systems Study
Scenario Database The component that stores representations of the scenarios that are run
Service Oriented
Architecture (SOA)

An underlying structure that allows loosely connected components of a
computer system to communicate, thus allowing services to be added or
changed without creating a completely new structure

Software interface The mechanism by which software components interact and
communicate with one another.

Spatial Data
Interface

The component that relays data between the Scientific Database and
models

UML Unified Modeling Language
WFDSS Wildland Fire Decision Support System
WMS Web Map Service

EXECUTIVE SUMMARY

ES.1 INTRODUCTION

In May 2009, the Joint Fire Science Program (JFSP) initiated Phase III of the Software
Tools and Systems (STS) Study. Phase III of the STS Study involved the development of a
software design for the Interagency Fuels Treatment Decision Support System (IFT-DSS) and
the implementation of a proof of concept (POC) system for the IFT-DSS. This document
describes the software design for the IFT-DSS and will remain a living document throughout the
development of the IFT-DSS. The IFT-DSS POC is available on the Internet1 and provides a
user-friendly software system to manage a subset of the most commonly used software tools and
data to perform fuels planning scenarios. A key goal of the IFT-DSS POC is to demonstrate that
a well-designed, extendable, service oriented architecture software (SOA) framework can help
organize and manage the many existing data sets, software models, and tools in the fire and fuels
domain and can help foster collaboration within a community of stakeholders. Ultimately, it is
the goal of the IFT-DSS program to change the software development and deployment process
within the fire and fuels domain to create efficiencies and leverage services among several large
distributed SOA systems (e.g., the BlueSky Smoke Modeling Framework (BlueSky), the
Wildland Fire Decision Support System (WFDSS), and the Fire and Fuels Application (FFA).

ES.2 THE FUELS TREATMENT PLANNING PROCESS

During Phase II and early in Phase III of the STS Study, many efforts were made to
understand the decision support needs and the workflow processes involved in fuels treatment
planning and management. As a result of these efforts, the following six workflow scenarios
were identified:

 Data acquisition and preparation involves collecting and preparing the vegetation data
needed for input into fire behavior and fire effects models.

 Strategic planning involves identification of high fire hazard areas within an area of
interest. The focus is to identify where further treatment analysis may be warranted on
the basis of potential fire hazard.

 Spatially explicit fuels treatment assignment involves (1) simulating fuels treatment
placement in areas of high fire hazard within an area of interest; and (2) simulating post-
treatment influences on fire behavior and fire effects potentials. The spatially explicit
fuels treatment assignment extends the strategic planning analysis to applying treatments
on the landscape.

 Fuels treatment effectiveness over time involves the evaluation of the temporal
durability of fuels treatments; that is, how long, in years to decades, a treatment will
continue to affect potential fire behavior and fire effects within an area of interest. This
workflow scenario naturally follows the strategic analysis and fuels treatment assignment
workflow scenario.

1 http:/iftdss.sonomatech.com

 ES-1

 Prescribed burn planning involves preparing the information needed to plan, document,
and conduct a proposed prescribed fire.

 Risk assessment involves conducting a probabilistic risk assessment for fuels treatment
planning.

ES.3 IFT-DSS SOFTWARE ARCHITECTURE

The findings of the work performed during Phase I of the STS Study indicated that an
SOA approach would best serve the fuels treatment community. Several key strategic-level
requirements warrant a web-based, distributed SOA approach:

 The need for a system that can be easily accessed and used by fuels treatment specialists
from a variety of different agencies.

 The need for a system that can organize, integrate, and manage existing and future fire
and fuels software applications.

 The need for a system that will support distributed collaboration and allow fuels
treatment planners to perform ad hoc analyses customized for a particular location and/or
situation.

The core of the IFT-DSS software architecture consists of five elements: (1) a multi-layered
graphical user interface (GUI), (2) a control database, (3) an executive application, (4) data and
software services, and (5) a scientific database. Figure ES-1 illustrates the five key components
of the architecture and their relative architectural arrangement. Each component contains
interconnected subcomponents, or layers, that perform specific functions within the system. The
GUI and the back-end system components and their behavior are described in Sections 3 and 4 of
this document.

 ES-2

Graphical User Interface
(User Interaction)

Control Database
(Business Process Control)

Executive Application
(Business Process Management & Information Flow)

Data and Software Services
(Business Services)

Scientific Database
(Scientific Data Storage and Access Service)

Graphical User Interface
(User Interaction)

Graphical User Interface
(User Interaction)

Control Database
(Business Process Control)

Control Database
(Business Process Control)

Executive Application
(Business Process Management & Information Flow)

Executive Application
(Business Process Management & Information Flow)

Data and Software Services
(Business Services)

Data and Software Services
(Business Services)

Scientific Database
(Scientific Data Storage and Access Service)

Scientific Database
(Scientific Data Storage and Access Service)

Figure ES-1. Illustration of the five key architecture components of the IFT-DSS.

The IFT-DSS architecture was designed to support the following key features:

 The IFT-DSS should make fuels treatment planning easier by

– allowing users to acquire, create, and transform input data easily;

– providing data choices: treelist, LANDFIRE grids, user supplied;

– allowing users to view and edit spatial and tabular data (inputs and outputs);

– organizing fuels treatment planning analysis steps and software tools; and

– recognizing user errors and explaining alternate action.

 The IFT-DSS should make fuels treatment planning more scientifically robust by

– providing guidance regarding data and model choices based on the scale and type
of analysis being performed;

– allowing users to publish and share analysis methods and algorithms;

– providing a mechanism to perform sensitivity and iterative analyses;

 ES-3

– providing a mechanism to easily incorporate new models and tools as they are
developed; and

– providing quality control, documentation, and audit-trail information to meet
regulatory reporting requirements.

ES.4 IFT-DSS SOFTWARE DESIGN

The IFT-DSS will serve as a software framework to integrate vegetation data, vegetation
simulators, fire behavior and effects models, and risk analysis tools. It will support the reuse of
IFT-DSS applications and services over the Internet, and it will be a flexible, modern,
web-friendly system. In designing the IFT-DSS, both current and future needs of the user
communities have been considered, and therefore the IFT-DSS can be implemented as a general
framework for scientific modeling and analysis. The IFT-DSS is designed in a manner that is
generic and almost completely independent of programming language, hardware, and operating
system implementation decisions; that is, the design can be realized in a variety of ways using
any one of many hardware and operating system configurations. It is important to realize that
this design was constructed in a way so that system components can be developed in different
languages and use different operating foundations while still conforming to this design.

Figure ES-2 illustrates the overall system design including system components and
interfaces, and their relationships. The IFT-DSS is described in terms of nine components and
seven interfaces. The nine components are:

A. Models – The scientific and computational components of the system; all other
components support the model operations

B. Model Adaptors – Enable integration of different models into the system

C. Scientific Database – Stores the actual data inputted to and outputted from models

D. Data Interface – Relays data between the scientific database and the models

E. Executive – Directs the execution of the models

F. Control Database – Stores representations of how different “runs” of models are
orchestrated

G. Navigator – Visualizes spatial data, allows users to edit data values for model inputs, and
allows users to execute runs through scenarios or parts of scenarios, all from a web
browser

H. Project and Planning Database – Stores administrative data about fuels treatment
projects

I. Planner Session Engine – Enables users to manage fuels treatment projects from a web
browser

 ES-4

A A

B B

C D

E

F
G

A

B

HI

1

111

2

2 2

3

4
5

6

7

7

2

N
a

vi
g

a
to

r

A A

B B

C D

E

F
G

A

B

HI

1

111

2

2 2

3

4
5

6

7

7

2

A A

B B

C D

E

F
G

A

B

HI

1

111

2

2 2

3

4
5

6

7

7

2

N
a

vi
g

a
to

r

Figure ES-2. Overall structure of the IFT-DSS depicting the system’s major
components (with lettered indicators) and software interfaces (numbered).

The seven interfaces are:

1. Model Data Exchange – Connections between machines running models to relay model
inputs and outputs

2. Model Control – Connections between the Executive and model adaptors to prepare the
model data exchange connections

 ES-5

 ES-6

3. Sequencer Control and Monitoring – Interaction between the Data Interface and
Executive to manage scenario execution

4. Executive Scenario Polling and Feedback – Executive queries of the Control Database
for required data, and feedback about model and machine execution performance

5. Executive Launching and Progress Reporting – Web application signaling of the
Executive to compile and run a scenario segment and the Executive reporting progress
back to the web application

6. Map and Data Presentation Interface – Communication between the Scientific
Database and the web application components

7. Web Page Generator and Database Interface – Web application queries of the Control
Database to produce the web pages displayed to the user for model inputs and outputs

This design supports not only the immediate needs of the fuels treatment planning
community but also supports two key requirements: (1) fuels treatment planners must be able to
collaborate and share analysis methods, and (2) the science and model development community
must be able to dynamically publish new data and applications to the system. In addition, this
design is flexible and extensible to support future planning needs, new sources of data, and new
applications as they evolve.

1. INTRODUCTION

In May 2009, the Joint Fire Science Program (JFSP) initiated Phase III of the Software
Tools and Systems (STS) Study. Phase III of the STS Study involved the development of a
proof of concept (POC) system for the Interagency Fuels Treatment Decision Support System
(IFT-DSS). The IFT-DSS POC provides a user-friendly software system to manage a subset of
the most commonly used software tools and data to perform fuels planning scenarios with the
goal of demonstrating the usefulness and feasibility of the IFT-DSS. The development period
for the IFT-DSS POC (Phase III of the STS Study) spanned approximately one year beginning in
May 2009. This document contains the software design specifications for the IFT-DSS POC
system, Version 0.3.0, as of May 2010.

The increasing operational complexity and urgency in fire and fuels management,
coupled with a proliferation in the number of decision support tools available, have driven the
need for a transformative solution. A distributed Service Oriented Architecture (SOA) approach
that is readily accessible to users across different agencies has the potential to positively
transform the development and deployment of data and software tools for fire and fuels
management by organizing and coordinating the interaction of independently operating data
services and software tools.2 When developed with input and acceptance from all stakeholder
communities, SOA systems can improve the exchange of information and promote collaboration
among stakeholder communities. These systems can streamline the decision support process,
facilitate improvements and advancements in fire and fuels science, and reduce the barriers that
hinder the adoption of sophisticated risk management science concepts and practices.

Several SOA systems currently exist in the fuels treatment planning domain, and they are
“distributed” and service-oriented to varying degrees. While these existing systems all contain
useful science and link disparate software applications, some of the systems are inaccessible or
require expert knowledge, and none of them individually supports the full range of fuels
treatment planning activities. In addition, these systems have not been widely adopted; thus,
their user groups are relatively small, and they have not been deployed in a way that facilitates
interagency collaboration.

The overall IFT-DSS development effort is intended to demonstrate that a well-designed
SOA approach, combined with community development efforts, can improve the decision
support process and underlying science in the fire and fuels domain. The overall goal of the IFT-
DSS is to develop an extendable software framework for organizing and managing the many
existing data sets, software models, and tools available for fuels treatment planning and analysis
and to foster collaboration within a community of stakeholders. Ultimately, it is the goal of the
IFT-DSS program to change the software development and deployment process within the fire
and fuels domain to create efficiencies and to leverage services among several large distributed
SOA systems including the BlueSky Smoke Modeling Framework (BlueSky), the Wildland Fire
Decision Support System (WFDSS), and the Fire and Fuels Application (FFA).

2 Refer to the Carnegie Mellon Software Engineering Institute (SEI) final report prepared for the JFSP for a
definition and discussion about SOA at
http://frames.nbii.gov/documents/jfsp/sts_study/palmquist_sei_report_2008.pdf

 1-1

http://frames.nbii.gov/documents/jfsp/sts_study/palmquist_sei_report_2008.pdf

The IFT-DSS software architecture was designed to provide the following benefits to its
various stakeholder communities:

 Integration, guidance, and collaboration regarding the use of existing data, software
models, and tools for fuels treatment analysis and planning.

 Increased productivity and efficiency in the fuels treatment planning process through a
system that can greatly reduce the time associated with preparing and manipulating data
and software applications.

 A framework that facilitates peer review and model validation for scientific algorithms,
applications, and vegetation data, along with a more efficient review, critique, and
feedback mechanism to improve the scientific work flow and decision support process.

 A central framework that meets the needs of users, scientists and software developers, IT
security specialists, and managers equally well, organizing a myriad of software systems
in a functionally effective, user-friendly manner while allowing IT administrators to
provide appropriate security and access.

 Another vehicle to enhance interagency functionality and collaboration and to serve as a
proving ground for identifying and testing acceptable governance issues that best support
interagency operations.

To achieve these goals, an SOA approach was taken in designing the IFT-DSS
architecture. SOA facilitates the integration of disparate software systems by separating
functions into distinct units, or services that can be made accessible across a computer network
(distributed) so that users can combine and reuse individual services as needed. A key
characteristic of a distributed SOA is the ability of users to have choices and control over the
data and software applications that are applied to address a specific situation.3

1.1 PURPOSE

This document is intended to serve two purposes: (1) to provide background and an
overview of the IFT-DSS, and (2) to provide technical design specifications for the software
implementation of the system. Sections 1, 2, and 3 of this document are intended for the end
user of the IFT-DSS, with Sections 1 and 2 providing an introduction to and background of the
STS Study and an overview of the IFT-DSS, and Section 3 containing a discussion of the
graphical user interface (GUI) for the system. Sections 4 and 5 are primarily for the use of the
IFT-DSS software development team and contain the technical design specifications for the IFT-
DSS.

This document will be updated throughout the IFT-DSS development process to reflect
design changes that may occur. It is a living document and will eventually serve as the final
technical documentation for the IFT-DSS.

3 Palmquist, 2008 (pages 17-18), http://frames.nbii.gov/documents/jfsp/sts_study/palmquist_sei_report_2008.pdf.

 1-2

http://frames.nbii.gov/documents/jfsp/sts_study/palmquist_sei_report_2008.pdf

1.2 DOCUMENT ORGANIZATION

This document is organized into six main sections.

 Section 1 – Introduction: Provides background on the IFT-DSS and describes the
purpose of this document.

 Section 2 – System Overview: Provides an overview on the user community,
anticipated work flows, and the system architecture.

 Section 3 – The IFT-DSS POC User Experience: Provides examples and a discussion
of the IFT-DSS GUI.

 Section 4 – Technical Software Design: Provides a description of the IFT-DSS
software design.

 Section 5 – Technologies: Provides a discussion of technologies used in the
development of the IFT-DSS.

 Section 6 – References: Provides a list of references cited in the document.

In addition to these sections, this document includes an executive summary and a
glossary. Because this document, and especially Section 4, contains many technical terms, the
reader may find the glossary particularly helpful. The glossary is located near the beginning of
this document just before the executive summary.

1.3 IFT-DSS NAMING CONVENTION

There will be several versions of the IFT-DSS as development progresses. Figure 1-1
illustrates and describes the naming convention for the IFT-DSS.

IFT-DSS v n1.n2.n3.n4IFT-DSS v n1.n2.n3.n4

Figure 1-1. Naming convention for the IFT-DSS where n1 indicates a proof of
concept (POC) or production release (POC releases are indicated with a 0 and
production releases are indicated by 1, 2, 3, etc.); n2 indicates a test user group
release; n3 indicates an internal test release; and n4 indicates an agile cycle release
for the development team.

Table 1-1 defines the IFT-DSS naming convention for the past releases and for the next
two years of development. Note that interim versions of the IFT-DSS may contain upgrades to
the versions indicated in Table 1-1.

 1-3

 1-4

Table 1-1. IFT-DSS naming convention during development. Note that there will
be interim releases between the major releases indicated in this table.

IFT-DSS Version Description

IFT-DSS v 0.1.0.0 The POC system released in January 2010.

IFT-DSS v 0.2.0.0 The POC released in April 2010.

IFT-DSS v 0.3.0.0 The POC system described in this document
released in May 2010.

IFT-DSS v 1.0.0.0 Initial beta release to be hosted by the Forest
Service, currently scheduled for
implementation in May 2011.

IFT-DSS v 2.0.0.0 Initial production version scheduled to be
released in May 2012.

1.4 REFERENCES TO OTHER RELEVANT DOCUMENTS

Several documents have been produced throughout the STS Study that are relevant to this
document. All STS Study documentation can be accessed through the Fire Research and
Management Exchange System (FRAMES) website. The following documents are of particular
relevance to this document:

 Working Summary of the SEI’s Engagement with the Joint Fire Science Program
(Palmquist, 2008).

 The Interagency Fuels Treatment Decision Support System Software Architecture (Funk
et al., 2009),

 Refined Work Flow Scenarios for the Interagency Fuels Treatment Decision Support
System (Drury et al., 2009).

2. SYSTEM OVERVIEW

Any number of architectural approaches could have been proposed for the IFT-DSS;
however, there are key requirements that the IFT-DSS must meet that warrant a web-based,
distributed SOA approach:

 The need for a system that can be easily accessed and used by fuels treatment specialists
from a variety of different agencies.

 The need for a system that can organize, integrate, and manage existing and future fire
and fuels software applications.

 The need for a system that will support distributed collaboration and allow fuels
treatment planners to perform analyses customized for a particular location and/or
situation.

This section provides a strategic-level overview of the fuels treatment decision support
process and the IFT-DSS architecture, including the rationale for the design approach and a
discussion of the key components of the system. A complete list of system requirements for the
IFT-DSS was developed as part of the architecture design process (Phase II of the STS Study)
and can be found in the document entitled “The Interagency Fuels Treatment Decision Support
System Software Architecture” (Funk et al., 2009),

2.1 SERVICE ORIENTED ARCHITECTURE

The term SOA is not an alias for a particular system; rather, it describes a particular way
in which a system is constructed. For our purpose, SOA is defined as a generic software
architecture framework designed to support a collection of services (databases and software
applications) with well-defined software interfaces.4 SOA facilitates the integration of new and
legacy software applications to streamline work processes. This architectural approach can also
support inter-operability with other decision support systems in the fire and fuels domain such as
BlueSky and the WFDSS. A “distributed” SOA is a system whose components are (or can be)
distributed across a computer network; that is, the services within the system can reside in
geographically different locations and can be accessed across a network. A web-based,
distributed SOA is a system that is accessible to users and controlled through a standard web
browser (e.g., Internet Explorer, Firefox) interface.

2.2 RATIONALE FOR A SERVICE ORIENTED ARCHITECTURE APPROACH

The findings of the work performed during Phase I of the STS Study indicated that an
SOA approach would best serve the fuels treatment community. Several key strategic-level
requirements warrant a web-based, distributed SOA approach:

4 A software interface is the programmatic mechanism that allows components (software applications) to
communicate with one another so that data and services can be accessible and interoperable within an SOA
framework.

 2-1

 The need for a system that can be easily accessed and used by fuels treatment
specialists from a variety of different agencies. Government and state agencies often
have rules and regulations regarding installation of new software on government
computers and workstations. These regulations make it difficult to install software
applications directly onto agency desktop computers. Therefore, to make the IFT-DSS
accessible across agencies, the system must be able to run on a standard desktop (or
laptop) computer with an Internet connection—eliminating the need for users to install
new software on their local computers. This feature requires that the system be hosted on
an accessible server and developed to function within the most commonly used web
browsers (e.g., Internet Explorer, Firefox).

 The need for a system that can organize, integrate, and manage existing and future
fire and fuels software applications. Existing fire and fuels software applications
perform a variety of functions and can be combined to perform complex simulations.
The variety of existing applications presents an integration challenge, as these
applications were developed with different goals and requirements, at different times, and
by different organizations. In addition, these applications were written in different
software languages, may currently run on different operating systems, have overlapping
functionality, and require differing data formats. The SOA approach evolved to address
the issue of integrating such disparate services and software applications. The design of
the IFT-DSS software architecture is driven by the requirement to enable disparate
applications to work together (including applications not yet developed) while requiring
minimal additional effort from application developers to support the framework. This
objective can be achieved by designing an SOA architecture that is adaptable and generic
enough to accommodate a broad variety of applications and functionality.

 The need for a system that will support distributed collaboration and allow fuels
treatment planners to perform ad hoc analyses customized for a particular location
and/or situation. One of the findings from Phase I of the STS Study was that fuels
management and risk mitigation require a distributed approach to collaboration and
present an ongoing need for data fusion. Because of the variety of operational contexts, it
is impossible to know the exact sets of models, tools, or data needed for every fuels
treatment planning situation. Therefore, customizable approaches are needed, requiring
collaborative tools that support web-enabled methods of analysis. A flexible and
extendable software framework will allow tool developers or sophisticated users to
rapidly configure, calibrate, or extend web-enabled capabilities to meet the needs of a
specific operational situation.

2.3 IFT-DSS USERS AND STAKEHOLDERS

A major goal of the overall IFT-DSS is to develop a community of individuals from
multiple agencies and organizations that can collaborate, exchange, and communicate science
and information related to fuels treatment analysis and planning. Collaboration among the fire
and fuels community is important to improve the science and understanding of fuels treatment
planning and to keep the data, software applications, and the IFT-DSS updated to meet current
and future needs. In addition, collaboration helps all agencies and organizations learn from each
other about methods, challenges, and approaches for fuels treatment planning.

 2-2

Through the efforts of Phase II of the STS Study, five stakeholder groups were identified
for the IFT-DSS:

1. Approximately 1,000 fire and fuel operations managers, or fuels treatment
specialists, at multiple federal and state agencies throughout the United States.
Fuels treatment specialists will be the primary users of the system for year-round
fuels treatment planning.

2. Several (20 to 30) scientist developers who will provide new or updated science,
models, and tools to the system. Scientific collaborators will be periodic
contributors to and users of the IFT-DSS.

3. Database developers who will provide applications and data to the system,
including:

– a few (2 to 5) institutional application and data providers who will make
large-scale databases available to the system (e.g., LANDFIRE and FSVeg);
and

– fuels treatment specialists who will upload or create local data sets.

4. Information technologists and software specialists who will operate and
maintain the system over time.

5. Agency senior management, including the National Wildfire Coordinating
Group (NWCG), who are responsible for issues related to business needs,
resource allocation and prioritization, financial investments, and the operational
efficiency and effectiveness of the community as a whole.

A community development effort to engage each of the five stakeholder groups listed
above is being conducted in parallel with the IFT-DSS POC software development effort. The
purpose of the community development effort is to gain the support and acceptance of a network
of stakeholders that gain valuable services from the IFT-DSS and have responsibilities for the
on-going functional and maintenance aspects of the system. In particular, the community
development strategy (a) describes the various stakeholder communities and their characteristics;
(b) presents a plan for enhancing awareness about and use of the IFT-DSS software by various
subgroups of these stakeholder communities; and (c) provides a roadmap of how the IFT-DSS
development team proposes to transition the software from the originators, JFSP and the NIFCG,
to the USDA Forest Service, the Managing Partner for the NWCG.5

2.4 OVERVIEW OF THE FUELS TREATMENT DECISION SUPPORT PROCESS

At the most basic level, the fuels treatment analysis and planning process involves
performing environmental assessments of fuels treatment options as mandated by the National
Environmental Policy Act (NEPA). This decision process centers on managing outcomes by
modifying vegetation. The decision support process involves preparing a detailed vegetation
data set; modeling vegetation changes based on growth, treatments, and/or disturbance; and

5 For more specific information regarding the community development plan, refer to the FRAMES website at
http://frames.nbii.gov.

 2-3

http://frames.nbii.gov/

analyzing the results of the modeled vegetation. A fuels treatment specialist then recommends
which treatment option to apply.

During the past two years, many efforts have been made to understand decision support
needs and the work flow processes involved in fuels treatment planning and management. These
efforts included surveying the fuels treatment planning community; conducting personal
interviews with several fuels treatment specialists representing different land management
agencies; engaging and soliciting feedback from the Interagency Fuels Treatment Work Group
(IFTWG); and conducting meetings and discussions with fire and fuels software application and
data developers. As a result of these efforts, the following six work flow scenarios have been
identified:

 Data acquisition and preparation work flow scenario provides a simple and efficient
way to collect and prepare the vegetation data needed for input to fire behavior and fire
effects models.

 Strategic planning work flow scenario enables identification of high fire hazard areas
within an area of interest. The focus of this work flow scenario is to identify where
further treatment analysis may be warranted on the basis of potential fire hazard.

 Spatially explicit fuels treatment assignment work flow scenario (1) simulates fuels
treatment placement in areas of high fire hazard within an area of interest, and (2)
simulates post-treatment influences on fire behavior and fire effects potentials. The
spatially explicit fuels treatment assignment work flow scenario extends the strategic
planning analysis to applying treatments on the landscape.

 Fuels treatment effectiveness over time work flow scenario enables the evaluation of
the temporal durability of fuels treatments, that is, how long, in years to decades, a
treatment will continue to lower potential fire behavior and fire effects within an area of
interest. This work flow scenario naturally follows the strategic analysis and fuels
treatment assignment work flow scenario.

 Prescribed burn planning work flow scenario provides the information needed to plan,
document, and conduct a proposed prescribed fire.

 A risk assessment work flow scenario provides a probabilistic risk assessment for fuels
treatment planning.

The work flow scenarios presented here can be divided into two categories: (1) fuels
treatment work flow scenarios and (2) a prescribed burn planning work flow scenario. The
prescribed burn planning scenario is often considered one phase of a fuels treatment scenario
because prescribed burning is one way to treat fuels. However, the development of a prescribed
burn plan is a long and complex process, and fuels treatment specialists have indicated that the
IFT-DSS could provide a useful service by supporting a work flow scenario specifically devoted
to prescribed burn planning.

The work flow scenarios defined here are not mutually exclusive and generally build on
one another. The IFT-DSS architecture is designed to be flexible and scalable so that new work
flow scenarios can be implemented as they evolve. Figure 2-1 is a work flow diagram showing
how the six work flow scenarios fit together from a process perspective.

 2-4

Point Fire
Behavior

Point Fire
behavior

Fuel Moisture
Calculation

yaImpute
Treelist

imputation

Fire
Effects

Grid Fire
Behavior

Treelist
change/growth Fire

transport
Treatment

optimization

FBFM

Moistures

Winds

Fuelbed

Fuel Loadings

Treelist
Data

Weather

LANDFIRE

Treelist

Local user
supplied

Transformations
& QC

Treelist
change

over time

Input Data

Data Preparation

Point Fire Behavior

Treatment Optimization

Fire Effects

Topography

Data Required Throughout

Change Over Time

Spatial Fire Behavior

Point Fire
Behavior

Point Fire
behavior

Fuel Moisture
Calculation

yaImpute
Treelist

imputation

Fire
Effects

Grid Fire
Behavior

Treelist
change/growth Fire

transport
Treatment

optimization

FBFM

Moistures

Winds

Fuelbed

Fuel Loadings

Treelist
Data

Weather

LANDFIRE

Treelist

Local user
supplied

Transformations
& QC

Treelist
change

over time

Input Data

Data Preparation

Point Fire Behavior

Treatment Optimization

Fire Effects

Topography

Data Required Throughout

Change Over Time

Spatial Fire Behavior

Figure 2-1. Work flow diagram illustrating how the fuels treatment planning
work flow scenarios fit together from a process perspective.

2.5 OVERVIEW OF THE IFT-DSS ARCHITECTURE

This section is a strategic-level overview of the IFT-DSS software architecture. A
complete description of the architecture is provided in the IFT-DSS Software Architecture
Design Document6.

The IFT-DSS is a software framework that integrates disparate vegetation data,
vegetation simulators, fire behavior and effects models, and risk analysis tools (some of which
are web-based) into a common GUI. It supports the reuse of IFT-DSS applications and services
over the Internet, and it is a flexible, modern, web-friendly system.

2.5.1 Architectural Components

The core of the IFT-DSS software architecture consists of five elements: (1) a
multi-layered GUI, (2) a control database, (3) an executive application, (4) data and software

6 http://frames.nbii.gov/documents/jfsp/sts_study/ift_dss_task2_tech_architecture_draft_20090212.pdf

 2-5

http://frames.nbii.gov/documents/jfsp/sts_study/ift_dss_task2_tech_architecture_draft_20090212.pdf

services, and (5) a scientific database. A description of the general function(s) of these five key
architecture components follows:

 The multi-layered graphical user interface (GUI)—Provides the user with an access point
into the IFT-DSS. It controls the user experience and is the single portal for all system
inputs and outputs.

 The control database—Stores all information, including data and user information that is
input to the IFT-DSS via the GUI. The control database manages the user experience and
the decision support process.

 The executive application—Works with the control database to invoke specific functions
and services. It functions as the internal system process controller and manages the flow
of data and information within the system.

 The data and software services—Provides the fire and fuels treatment domain data,
software models, and tools that support the decision making process.

 The scientific database—Stores all project-related input, intermediate, and output data. It
is called the scientific database because it contains both spatial data (map layers) and
non-spatial tabular scientific data.

Figure 2-2 illustrates the five key components of the architecture and their relative
architectural arrangement. Each component contains interconnected subcomponents, or layers,
that perform specific functions within the system. These components and their behavior are
described in Sections 3 and 4.

 2-6

Graphical User Interface
(User Interaction)

Control Database
(Business Process Control)

Executive Application
(Business Process Management & Information Flow)

Data and Software Services
(Business Services)

Scientific Database
(Scientif ic Data Storage and Access Service)

Figure 2-2. Illustration of the five key architecture components of the IFT-DSS.

2.5.2 Key Architectural Features and Functions

The IFT-DSS architecture is designed to support the following functions and features:

 organize the decision support process, analysis steps, and software tools commonly used
for fuels treatment planning;

 provide data choices (i.e., standard treelist data, standard gridded data, and/or locally
generated data);

 enable visualization of spatial and tabular data, editing of data, and user interaction at
each processing step;

 streamline data preparation and processing by offering a mechanism to acquire, create,
and transform input data (e.g., the ability to combine vector and raster data formats,
perform vector-to-raster transformations, and vice versa);

 provide a quality control, documentation, and audit-trail mechanism to meet regulatory
reporting requirements;

 2-7

 2-8

 provide guidance on user options (e.g., submodel choices) based on geographic scale and
the type of analysis being performed;

 enable the stopping and starting of analyses at any processing point;

 facilitate analytical collaboration through a central system library that allows fuels
treatment analysts and scientists to publish and share methods and algorithms with other
system users;

 provide a mechanism to perform sensitivity analyses;

 recognize user errors and explain alternate actions; and

 facilitate and encourage scientific collaboration through an authorship and publishing
mechanism that is able to incorporate new models and tools as they become available.

3. THE IFT-DSS USER EXPERIENCE

An important aspect of the IFT-DSS architecture is system behavior and user experience.
This section describes the behavior of the IFT-DSS from a user perspective. Screen shots are
included to show the organization and content of the GUI. For a more detailed walkthrough of
the IFT-DSS GUI and how to use the system please refer to the Getting Started Guide available
online within the system (http://iftdss.sonomatech.com/Getting_Started_v0.3.0.pdf).

The IFT-DSS GUI is web-based and functions within a standard web browser (e.g.,
Internet Explorer, Firefox). A user login screen on the IFT-DSS website is the main point of
entry into the system. The first time that users log into the IFT-DSS, they are prompted to create
a user profile that captures each user’s email address, password, job title, organization, and other
relevant information. This user profile is saved and used for subsequent logins.

From a user perspective, a project analysis will involve three phases: (1) project setup
and planning; (2) software model execution and iterative analysis; and (3) project finalization,
documentation, and archive. The remainder of this section describes the general experience of
an IFT-DSS user during each of the three phases of a project analysis. It should be noted that the
GUI screen shots are in working draft form and will evolve as feedback is received and as the
system matures. The GUI screen shots contained in this section represent the latest version of
the IFT-DSS v 0.3.0 as of May 2010.

3.1 LOGGING INTO THE IFT-DSS

The IFT-DSS user interface provides a portal for a user to create project analyses,
execute modeling scenarios, view the results of modeling scenarios, and manage and share
projects with other IFT-DSS users. The user interface is secured and accessed by using an email
address and password. Figure 3-1 shows the IFT-DSS login screen.

Once a user logs into the system, he or she can create an account and a user profile. The
user profile serves as the user’s central location from which he or she can create a new project
analysis, revisit past analyses, manage analysis projects, and view or edit the user profile.
Figure 3-2 shows the IFT-DSS POC user home page. Figure 3-3 shows the “My Profile” screen
where users manage their profile information.

User profile information is stored in a table in the Project and Planning Database
(discussed in Section 4.1.8), and is used by the system for user authentication. All project
analyses created by a user are associated with a user record in the Scenario Database. The user
has the ability to log out of the system at any point during an analysis session without losing
information from that session. When a user logs out of the system, he or she is re-directed to the
login screen.

 3-1

http://iftdss.sonomatech.com/Getting_Started_v0.3.0.pdf

Figure 3-1. The IFT-DSS user login screen.

Figure 3-2. The IFT-DSS POC user home page.

 3-2

Figure 3-3. The “My Profile” screen where users manage their profile information.

3.2 PHASE I – PROJECT SETUP AND PLANNING

After a user logs into the system and reaches his or her home page, he or she is provided
a list of options. From this list, the user can create a new analysis project, load an existing
analysis project or modeling scenario, manage projects, and edit or view his or her user profile.
Figure 3-4 shows the user options available on a user’s home page.

Figure 3-4. The options available on a user’s home page.

 3-3

Upon selecting the “Manage Projects” link, the user will be presented with a screen
listing his or her projects. This is where project analyses are established and managed. Figure
3-5 shows the project setup screen.

Figure 3-5. The IFT-DSS POC “Manage Projects” project list and project setup screen.

To create a new project, the New button at the bottom of the screen is selected. A user
creating a new project analysis enters information about the project in the screen shown in
Figure 3-6.

Figure 3-6. The Project Details screen in the IFT-DSS.

The user enters a name and description for the project analysis that will identify the
project throughout the system. Next, the new project appears in the Project List and the user
selects the Manage Runs button at the bottom of the Project List screen. A new screen appears
prompting the user to set up a Run within the project. A Run is an analysis with a specific
objective. Figure 3-7 shows the Run Details screen of the IFT-DSS. The user then specifies a
name for the Run, the analysis objective, and the Action Graph to be used. The Action Graph
specifies the scientific models to be used for the analysis and assembles them into a process flow
for the user.

 3-4

Figure 3-7. The Run Details screen of the IFT-DSS.

3.3 PHASE II – SOFTWARE MODEL EXECUTION AND ITERATIVE ANALYSIS

Once a user has set up an analysis, the navigation elements of the website will change on
the basis of the selected modeling scenario, and the specific pathway for the selected scenario
will be displayed as a tabbed navigation bar. A dynamically generated Action Graph based on
the selected pathway will also appear. The Action Graph describes the data inputs, outputs, and
processes involved in running the selected modeling process. Figure 3-8 shows the dynamically
generated tabbed navigation bar and Action Graph for a sample prescribed burn planning
modeling scenario using the FlamMap application to predict surface fire behavior for a point
location.

The modeling scenario graph will be interactive, allowing the user to click on a step in
the graph and navigate to a data input screen associated with that step. For example, if a user
clicks on the “FlamMap” oval in Figure 3-8, a screen prompting the user for the information
needed to run the FlamMap model will appear. The scenario graph will also provide feedback to
the user by graphically depicting how far the user has progressed through the steps of the
modeling scenario run at any given time. The purpose of the modeling scenario graph is
threefold: (1) to visually describe the inputs, outputs, and processes associated with a selected
modeling scenario pathway, (2) to allow the user to access the input screens for the selected
modeling scenario pathway, and (3) to report the status of a modeling scenario run once the run
has been executed.

The pathway that defines the modeling scenario will be stored in the Control Database
and dynamically retrieved by a program called “pageCreator” at run time. The pageCreator’s
role will be to interact with the database and retrieve pages and elements for each page, based on
the selected modeling scenario. The pageCreator will also dynamically generate a scenario
graph (Figure 3-8) for the modeling scenario selected.

 3-5

Action Graph

FlamMap input
data

Action Graph

FlamMap input
data

Figure 3-8. The dynamically generated tabbed navigation bar and Action Graph
for a sample modeling scenario.

At this point, the user can navigate through the modeling scenario pathway by clicking
through the Action Graph (Figure 3-8). This style of navigation allows the user to iterate the
steps of the modeling scenario. At each step, the user can provide input data or accept default
values in the text field inputs. At each step in the modeling scenario pathway, the user can
execute an individual model by clicking on the oval in the Action Graph. The outputs from the
model are then displayed (Figures 3-9 and 3-10) and will become the inputs to the next model
or process in the modeling scenario pathway.

As a project analysis is performed, the IFT-DSS tracks the status of model run scenario
processing time. Future versions of the IFT-DSS will allow the user to view status updates on
the user home page or receive email status notifications for processes that require a long period
of time to complete. The email notifications will include a link connecting the user to the
completed process step, allowing the user to continue stepping through the scenario from where
he or she left off.

 3-6

Figure 3-9. Sample outputs from FlamMap in tabular form.

Figure 3-10. Sample outputs from FlamMap in graphical form.

 3-7

 3-8

The IFT-DSS allows the visualization and manipulation of spatial data. Figure 3-11
shows a screen shot of the map viewer within the IFT-DSS GUI (left) displaying a satellite map
base layer. After running the FlamMap model for the area of interest, the map window allows
visualization and manipulation of the FlamMap output data layers (right). The map viewer is
dynamically linked to the action graph at the top of Figure 3-11 allowing dynamic navigation
among action graph data entry screens. For example, when the Wind box on the action graph is
selected, the data input screen appears for entering wind data for use in FlamMap. The IFT-DSS
also allows map layers to be exported and viewed in Google Earth.

Figure 3-11. Screen shot of the map viewer within the IFT-DSS GUI (left) and
the map viewer within the IFT-DSS displaying fire behavior output data from
FlamMap (right).

3.4 PHASE III – PROJECT FINALIZATION, DOCUMENTATION, AND ARCHIVE

After reaching the end of an analysis, the user can save the scenario as a Run within the
project analysis. The project is then accessible from the Manage Projects screen shown in
Figure 3-5. The Manage Projects screen allows the user to view projects, view runs within a
project, view project results, and assign sharing privileges to other users. For example, in future
versions of IFT-DSS, a user could designate another user as a contributor who would have fewer
(or read-only) privileges than the project owner.7 The user can also archive a project from this
screen.

From the Manage Projects screen (Figure 3-5), the user can view and edit a project or
modeling scenario run, share a project with other users and specify their user privileges, archive
a project, and generate reports related to a specific project. The archived projects will continue
to be available to the user but will no longer be considered active. See Section 4.1.9 for details
regarding the report generation for a project.

7 The ability to share projects will be active in future versions of the IFT-DSS.

4. TECHNICAL SOFTWARE DESIGN

This section presents the IFT-DSS POC software design in a manner that is generic and
almost completely independent of programming language, hardware, and operating system
implementation decisions; that is, the design can be realized in a variety of ways using any one
of many hardware and operating system configurations. It is important to realize that this design
was constructed in a way that system components can be developed in different languages and
use different operating foundations while still conforming to this design. Approaching the
design in this manner allows the software architect to maintain a maximum degree of modularity
when considering how the system will be constructed. Section 5 contains the language,
hardware, and operating system details for version 0.3.0 of the IFT-DSS.

The presentation of the IFT-DSS software design in this section is separated into three
parts: (1) a description of the system components, (2) a description of the connections among
these components, and (3) a description of the behavior of the system as a whole. Figure 4-1 is
a diagram of the overall structure and components of the system. The structural components are
labeled with letters, and the software interfaces are labeled with numbers. Each of the nine
components, A through I, is described in Sections 4.1.1 through 4.1.9; each of the seven software
interfaces, labeled 1 through 7, are described in Sections 4.2.1 through 4.2.7. Section 4.3 revisits
the components and software interfaces and describes how they interact.

Components

A. Models – The scientific and computational components of the system; all other
components support the model operations

B. Model Adaptors – Enable integration of different models into the system

C. Scientific Database – Stores the actual data inputted to and outputted from models

D. Data Interface – Relays data between the scientific database and the models

E. Executive – Directs the execution of the models

F. Control Database – Stores representations of how different “runs” of models are
orchestrated

G. Navigator – Visualizes spatial data, allows users to edit data values for model inputs, and
allows users to execute runs through scenarios or parts of scenarios, all from a web
browser

H. Project and Planning Database – Stores administrative data about fuels treatment
projects

I. Planner Session Engine – Enables users to manage fuels treatment projects from a web
browser

 4-1

A A

B B

C D

E

F
G

A

B

HI

1

111

2

2 2

3

4
5

6

7

7

2

N
a

vi
g

a
to

r

A A

B B

C D

E

F
G

A

B

HI

1

111

2

2 2

3

4
5

6

7

7

2

A A

B B

C D

E

F
G

A

B

HI

1

111

2

2 2

3

4
5

6

7

7

2

N
a

vi
g

a
to

r

Figure 4-1. Overall structure of the IFT-DSS depicting the system’s major
components (with lettered indicators) and software interfaces (numbered).
Features that will be implemented in future versions of the IFT-DSS are
represented with dashed borders.

Interfaces

1. Model Data Exchange – Connections between machines running models to relay model
inputs and outputs

2. Model Control – Connections between the Executive and Model Adaptors to prepare the
model data exchange connections

 4-2

3. Sequencer Control and Monitoring – Interaction between the Data Interface and
Executive to manage scenario execution

4. Executive Scenario Polling and Feedback – Executive queries of the Control Database
for required data, and feedback about model and machine execution performance

5. Executive Launching and Progress Reporting – Web application signaling of the
Executive to compile and run a scenario segment and the Executive reporting progress
back to the web application

6. Map and Data Presentation Interface – Communication between the Scientific
Database and the web application components

7. Web Page Generator and Database Interface – Web application queries of the Control
Database to produce the web pages displayed to the user for model inputs and outputs

All of the system components have been realized in version 0.3.0 of the IFT-DSS to some
extent with two exceptions: (1) the collaboration interfaces, as indicated with dashed borders in
Figure 4-1, and (2) some of the more complex scenario execution optimizations described in this
section.

Experience gained from using the initial versions of the IFT-DSS will help determine
priorities for optimizing existing features and adding new ones. For example, it may prove to be
more valuable to add new models and scenarios than to maximize resource utilization through
parallelization of model execution. Some of the optimizations will become possible when
system deployment configuration and run execution times are known. The features involved in
these optimizations reside primarily within the executive, Data Interface, and model adaptors.

The collaboration interfaces include support for analytic collaboration among planners
sharing knowledge and effort and for scientific collaboration in the authoring of models and
model scenarios. The analytic collaboration interface is scheduled for implementation during
year 2 of system development (2010). At that time, support for scientific collaboration will also
be added by providing administrative access to the Control Database loader tool through an
administrative GUI so that new scientific models and scenarios can be added to the system.

The analytical collaboration interface is the mechanism by which planners work together
on projects. This includes control of shared access to project data and runs. A project owner
will be able to solicit input from selected peers. Planners will also be able to discuss the
preliminary results through a project-specific message relay or discussion forum. This will
augment the planning project results by encouraging planners to work together within the
system. It will also document quality assurance by recording peer feedback with the other
project data.

The scientific collaboration interface provides a mechanism for advanced users, data
providers, and software developers to add new capabilities to the system. This will include a
scenario editor and a software development environment. The scenario editor is the mechanism
by which advanced users can construct custom analysis pathways. Users of the existing
IFT-DSS GUI are able to select an analysis objective and choose from the predefined processing

 4-3

scenarios supporting that objective. The scenario editor will extend this capability by allowing
users to select data and model sequences to create custom analysis pathways.

4.1 COMPONENTS

The components described in Sections
4.1.1 through 4.1.9 are software programs and
subsystems.

4.1.1 Models

Models constitute the heart of the
system, as they are the scientific and
computational components of the system. All
of the other system components were designed
to support the operation of the models and the
examination of the model outputs.

The first models that have been
integrated into the IFT-DSS are programs (or parts of programs) that already exist and are in use
in the fire and fuels community. These models include FlamMap and Consume. These models
have been integrated into the IFT-DSS by the methods described in Section 4.1.2.

In the future, as protocols and guidelines for integrating models into the IFT-DSS become
available to model developers, it will be much easier for a model to be integrated into the
IFT-DSS. Future models will be better aligned with IFT-DSS’s execution paradigm, resulting in
several advantages: they will be much smaller than any standalone modeling program, they will
be simpler to develop and maintain, and they will be able to take full advantage of the system’s
parallel processing architecture.

Developers will be able to integrate models into the IFT-DSS by using the “Model
Subclass” method described in Section 4.1.2. In this simple and efficient approach to
incorporating models into the system, future models may consist of small sections of
programming code that define and execute specific, self-contained functions. For example,
many existing standalone software applications contain programmed functions that are linked
together and tightly coupled to a user interface. In the future, it is more desirable for model
developers to program functions as discrete pieces of programming code that are unlinked to
other functions and are decoupled from a user interface. Ideally, they will consist of a relatively
small number of lines of program code embodying a single behavior or very few modeling
equations. This approach will allow new functions and features to be easily integrated into the
IFT-DSS without the need to redesign the IFT-DSS software framework or user interface.

The IFT-DSS contains a system administration tool, the Control Database Loader (CDL)
that facilitates the implementation of existing and new models into the framework. The CDL
tool provides a user interface in which a series of screens prompts the system administrator to
enter information about a model, including its inputs, units, and outputs. The CDL tool also
provides a model builder screen where actual programming code can be created or entered and

Models are denoted by the letter A in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

Models are denoted by the letter A in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

Models are denoted by the letter A in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

 4-4

registered within the IFT-DSS system. Figure 4-2 shows a screen shot of the CDL
administration tool.

Figure 4-2. Screen shot of the CDL tool.

 4-5

4.1.2 Model Adaptors

The model adaptors constitute an
environment—a layer of software—
that makes it possible for models to be
added to the IFT-DSS and function as
services. The model environment
consists of several sublayers and
encapsulates two software interface
protocol controls. Figure 4-3
illustrates how these layers and
protocols enable three methods of
adding models to the IFT-DSS. Each
method is a different type of model
adaptor.

One protocol control (depicted by the large arrow above the Shared Model Adaptor box)
is used to exchange data among models within the system and to interface with the Scientific
Database (C in Figure 4-1). The other protocol control, depicted in Figure 4-3 by the small
arrows above the Shared Model Adaptor boxes, is used to initiate the model’s processing and
guide the configuration of data sockets. These two protocol controls correspond to software
interfaces 1 and 2 in Figure 4-1 and are described in Section 4.2.1 and 4.2.2. All of the models
that reside within the IFT-DSS use the same two software interface protocol controls, and these
software interfaces are exposed to the rest of the IFT-DSS system.

Model adaptors are denoted by the letter B in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

Model adaptors are denoted by the letter B in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

Model adaptors are denoted by the letter B in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

 4-6

Type A Type B Type C
Model Subclass Method Wrapped Program Method External Model Service

Type A Type B Type C
Model Subclass Method Wrapped Program Method External Model Service

Figure 4-3. Illustration of the three model hosting methods by which models can
be integrated into the IFT-DSS and function as services.

Model Integration Methods

As shown in Figure 4-3, there are three types of model adaptors, Types A, B, and C, that
define three ways by which a model can be added to the IFT-DSS.

1. Type A – Model Subclass Method – The adaptor type on the left depicts the most
efficient method. It consists of a standard application programming interface (API) that
includes an application server, a hosting program, communication handlers, and all of the
data handling code required to operate the modeling code. The model is added to this
code base by extending (creating a subclass of) the model parent class. The other
“wrapping” methods employ these same components (except the model parent class).

2. Type B – Wrapped Program Method – The middle adaptor type depicts a more expedient
method for deploying existing model programs by providing a wrapper program that
communicates with an existing model program and translates the model inputs and
outputs to the format standards used by the IFT-DSS.

 4-7

3. Type C – External Model Service Method – The adaptor type depicted on the right side
of Figure 4-3 allows the IFT-DSS system to incorporate functionality from other systems
such as BlueSky and WFDSS by utilizing web services.

These methods all share a number of important features. Near the top of each module stack
depicted in Figure 4-3 are three shared features represented by the rectangles labeled “Shared
Model Adaptor.” Below each of these are various forms of “Model” components.

Model Control Communications

The first component required for service-oriented model hosting is an application server.
The IFT-DSS employs an off-the-shelf (OTS) solution for this requirement. The purpose of this
component is to receive messages from an external control, interpret them as requests for model
execution, and act on them by deploying the model host program. “Models” are computational
objects, at the heart of each model integration method, that run on the distributed compute
servers of the IFT-DSS. The OTS service provider causes the models to run, passes them
arguments and commands, and relays status information. Model hosting programs receive the
control messages from the Executive (E in Figure 4-1). The protocol of the commands is
described in Section 4.2.2. The application server communicates status information from the
model components back to the Executive through the same interface.

Model Data Communications

In addition to command and control data, the models communicate model data on a peer-
to-peer basis. These data pass among models running on distributed computational servers, the
Scientific Database, and other interface subsystems. See Figure 4-4 below for a Unified
Modeling Language (UML) diagram corresponding to the following description of model
communication infrastructure.

Each model program has zero or more input and output streams. Each input stream de-
multiplexes data from one or more connections to an output stream of another model. Likewise,
each output stream multiplexes or broadcasts through one or more connections to the input
streams of other models. Information about the number of streams, their data type, their fan-out
or fan-in, and the specific addresses of each channel socket are received from the Executive.

 4-8

 4-9

Figure 4-4. UML diagram of the IFT-DSS model communication infrastructure.

Each output connection has a “multiplexing polynomial,” which allows parts of a model
to be ru

hiving.

 to

s

n on different machines. It is also possible to do the same work on multiple machines or
to use the output from one step as the input to several later steps. Likewise, data can
simultaneously be sent to the next modeling step and to the Scientific Database for arc
This data distribution capability is achieved by the member functions of the input and output
stream classes, which use the multiplexing polynomial to sequence data from an output stream
a set of input streams. These classes have members common to stream-like objects including
open(), close(), read(), and write(). However, the actual behaviors of these class members are
different from those of their familiar analogues. To illustrate these differences, Table 4-1 show
the pseudocode for the output stream members.

Table 4-1. Pseudocode for key member functions to the output stream class.

Open()
 For each connection
 Save multiplexing polynomial coefficients and ranges
 Fork and in the new thread
 Note the time
 Open the connection
 End thread
 End for
End of open()

Close()
 For each open connection
 Terminate the connection (i.e. session)
 End for
End of close()

writeObject()
 format the object into a packet
 for each destination connection
 check object index against multiplex polynomial
 if index is in a write window
 fork
 wait until connection is ready

 send the packet through the connection
 note the time
 end thread
 end if
 end for
end of writeObject()

The open() and writeObject() member functions use separate threads for each connection
because each of these can require some time to synchronize with the other end of the connection.
In the pseudocode this is represented with “fork” and “end thread” clauses. None of the actual
programming languages used to implement these behaviors has an analogous construct.

Input streams have open() and close() behaviors similar to the corresponding behaviors of
output streams. However, there is no need for a channel select polynomial. All of the data that
arrive at an input channel are processed and the input streams have a readObject() behavior
instead of a writeObject() behavior. ReadObject() reads one object from any of the one or more
open connections. Table 4-2 shows the pseudocode for the input stream member.

 4-10

Table 4-2. Pseudocode of the readObject member function of the input stream class.

readObject()
 for each input socket
 check for pending data
 note how long it’s been waiting
 end for
 read the packet that has been waiting the longest
 extract the data object from the packet

 if an object with this packets index has already been received
 discard packet

 start over from the top
 else
 return the received object
 end if
end of readObject()

The stream classes handle the peer-to-peer flow of science data. In addition, the model
host program must communicate control and status information with the Executive and cause the
model to be performed for each set of data inputs. This part of this program is the same for all
models.

The processing here is independent of output multiplexing, but it must take into account
an analogous property of inputs. Each input stream must have a known “front aperture”
description. The front aperture is a specification of the neighborhood of locations at which
parameters must be supplied to the model in order for the model to calculate its result. The front
aperture of many (aspatial) models is a delta function. In other cases, it may span the entire
domain of the input. Both of these conditions can be indicated with flags. In other cases, ranges
of values will have to be specified for each input coordinate.

Processing entails running a model many times. The sequencing of model execution is
determined by the parameters of the program. One form of sequencing is to execute the model
once for each record in a specified (“indexing”) input stream. Indexing streams may have to be
constrained to have only delta function entrance pupils. In some cases, there may be no suitable
input stream. When this occurs, a special form of input stream is required. This pseudo-input
stream would have no connections but would respond to readObject() calls with indexed null
data rows.

The model hosting program is responsible for configuring peer-to-peer connections with
other models, managing all communications, and executing a model as needed. A very brief
pseudocode of this component is presented in Table 4-3. The data handling for each model is
divided into phases. Only a single phase is required, but generally, three I/O phases correspond
to prerequisite, concurrent, and retrospective communications. More phases are possible, and
there is no benefit in constraining the range of supported I/O phases. Zero or one model
functions are executed during each model phase.

 4-11

Table 4-3. Pseudocode of the model hosting program.

Model Hosting Program:
 Parse all control parameters from dispatcher
 For each phase of the model
 Open each output steam
 For each input stream
 Fork and in the new thread
 Open
 WHILE (still objects to read)
 Read in an object
 Unpack
 For each effected ingest queue object (including new ones)
 Distribute data into ingest queue object
 If ingest queue object is ‘complete’ (i.e. aperture full)
 Send message parent thread

 End if
 End for effected queue entries
 END WHILE

 Close
 End of thread
 End for all input stream
 WHILE (more ‘aperture full” messages expected)
 message from daughter thread Wait for ‘aperture full’
 Do the model operation(s)
 For each output stream
 Write a result object
 End for
 END WHILE
 Close everything
 End for phase
END of model hosting program

During each processing phase, all of the outputs are initiated, and a separate processing
thread is produced to handle each input. The input threads each initiate the communications
associated with a single input stream, receive and process each data object, and finally terminate
the communications. The processing done by these threads is limited to unpacking received data
objects and distributing their content into the appropriate areas of large, queue-like data structure
where model input objects are staged. Whenever the data insertion results in the completion of a
staged data object, a message is sent to the main thread. The main thread, upon receiving
notification from one of its daughter threads, causes the model’s routine to execute and process
the staged input data. Any output objects that result are transmitted. Monitoring of staging
queue object completeness continues until all of the input threads terminate. Then the main loop
finishes and either moves on to the next phase or terminates.

 4-12

4.1.3 Scientific Database

The Scientific Database
is used to store both spatia
(geographic information system,
GIS) and non-spatial data. It
manages raster images from the
LANDFIRE database, treelist
and polygon stand layers such
those used by the Forest
Service’s Forest Vegetation
Simulator (FVS) software, and
other forms of multidimensiona
data. The Scientific Database
also handles time series and parameter ensemb

l

 as

l

le data sets.

The early versions of the IFT-DSS have relatively modest GIS requirements compared to
those that must be added as the system matures. For version 0.3.0 of the IFT-DSS, the Scientific
Database manages raster spatial data; however, the Scientific Database was designed and
constructed to handle additional data types that will be needed as the system matures. The
Scientific Database houses these data (images) and any ancillary data required to manage them.
All of the data for a single Project within the IFT-DSS is stored at the same spatial resolution and
in the same map projection. The images contain bands for all of the parameters provided by
LANDFIRE plus those produced by FlamMap and Consume.

In addition to supporting the map layers for modeling, the Scientific Database accepts
ancillary layers from the users and presents these with the other map layers. These layers assist
the user in navigation and could be included in reports.

Every processed map layer has a hidden layer containing the time of last update. These
timestamp layers, and the production of processing maps based on them, are among the most
important features of the Scientific Database. The generation of masks (that indicate where the
content of one layer is newer than the content of another) is an important early step in the
compilation of scenario fragments.

Upon initiation of a run, the Scientific Database is directed to generate working data sets
from pre-existing standard data, user-supplied layers, or default value sets. The system will
eventually have access to a complete copy of the LANDFIRE data. These map layers will serve
as the default spatial data layers unless the user has provided study-specific images containing
the same parameters. As the system’s capabilities expand through the addition of new models
and scenarios, the library of default imagery will expand to support the additional model inputs.

The Scientific Database is denoted by the letter C in Figure 4-1

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

The Scientific Database is denoted by the letter C in Figure 4-1

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

The Scientific Database is denoted by the letter C in Figure 4-1

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

Model

adaptor

Format Converter

Science Data
&

GIS layers

Database
Of

Projects,
Runs,

Planners
etc

executive

Model

adaptor

Model

adaptor

Data Review
QA & Editor

Intra-system data exchange

Situational
Application

Editor

Remote Data Or
Computation Service

Planner
Session
Engine

Database
Of

Scenarios,
Servers,

&
geoMetaData

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

at
o

r

 4-13

The Data Interface is denoted by the letter D in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Data Interface is denoted by the letter D in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Data Interface is denoted by the letter D in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

4.1.4 Data Interface

The Data Interface is an
interface between the models and the
geographic information system
where the modeling inputs and
outputs are stored. Since the
sequencer determines what data are
processed, it is responsible for
managing key aspects of system
load.

Beyond simple speed
considerations, this component has
the opportunity to maximize
performance by limiting the waste and redundancy in the data processed by the models. When
performance constraints merit, the component can exploit these additional opportunities.
Although version 0.3.0 of the IFT-DSS does not have these features, the design does account for
them, and their implementation will be prioritized along with expansion of the initial suite of
modeling capabilities.

It is desirable to ensure that only required data are processed. When only a small section
of the input data needs to be processed (as is the case when models must be re-executed
following edits), the models’ front aperture description will be used to ensure that only the
required areas of the input data are reprocessed. This check requires cooperation between the
Data Interface, which has access to relative data ages, and the Executive, which has the apertures
and controls the topology of the compute service network.

A later version of this component may further improve processing efficiency by
determining which data within the edited regions are redundant and therefore do not need to be
processed. This type of optimization is most easily incorporated into the model hosting
programs, but the gains may be greater if implemented in the Data Interface component.

Prior to process initiation, a series of messages will pass between the Executive and the
Data Interface. These will include communication about masks that depict the areas affected by
data updates. By working with the Executive (described in the next section) and the Scientific
Database to process these data, this program will generate input and output masks for the
affected areas of the scenario fragment. The Executive (after distributing the scenario fragment
across the pool of computational resources) will send information to the Data Interface that will
be used to make the necessary input and output connections and plan the distribution of data to
the appropriate outputs. Finally, the Data Interface will receive information from the Executive
upon initiation of the execution of a scenario fragment. This information will include the
identity of the run, a list of the run fragments’ saved results, and a list of required inputs and
intermediate data sets. The inputs and results lists will trigger the generation of write and read
sockets as described earlier. The interaction described above is summarized in Section 4.3.3 as a
swim lane diagram (Figure 4-12).

 4-14

4.1.5 Executive

The Executive component
compiles a scenario segment and is
invoked in response to an action by th
user. A scenario is represented as a
Directed Acyclic Graph (DAG). In the
DAG, the models are the nodes and the
data passed between models are the edges,
or vectors. The Executive receives
parameters defining which DAG vecto
which scenario should be prod

e

r of
uced.

The Executive responds by
querying the Control Database for additional data about the run’s scenario. After analyzing these
data, it causes model services to begin running with appropriate peer-to-peer data connections.
Then, it directs the Scientific Database Data Interface to send the required input data. This, in
turn, causes the models to execute and result data to be returned to the Scientific Database. This
process is summarized in the brief pseudocode shown in Table 4-4.

Table 4-4. Brief pseudocode for the Executive program.

Executive program
 Receive scenario (section) from User Interface
 Get model, server, scope, etc data from scenario DB
 Compile a Network of connections and processes
 For each process
 Connect to server and start process
 Relay connections and other configuration data
 End for
 Monitor status and diagnostic feedback
 Notify user (by popup or email)
 Update resource capabilities in Control Database
End of program

The Executive is denoted by the letter E in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

a
to

r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

a
to

r

The Executive is denoted by the letter E in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

a
to

r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

a
to

r

The Executive is denoted by the letter E in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

a
to

r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
a

vi
g

a
to

r

The most complicated part of this program’s work is the compilation of a scenario
fragment into a set of program execution processes and connections among these processes.
This compilation begins with several recursive, binary, spatial operations. As noted above, some
of this work will be done by the Executive, and some of it must be delegated to the Data
Interface or the Scientific Database.

Since recursion is difficult in the relational database management system (RDBMS), the
scenario’s entire set of models and connection will be retrieved from the database. Then the
Executive will recursively search the scenario’s DAG to generate a (possibly redundant) tree-like
graph of model nodes and communication vectors. Using code on the returning side of the
recursive calls, the Executive will exhaustively traverse this graph, calling on the Scientific
Database or Data Interface to generate an input newer than the output mask for each input to

 4-15

 4-16

each model. If necessary, this step can be optimized or omitted altogether in cases where enough
data are modified in the high-order branches to warrant recomputation over the entire domain of
the run. Each of these masks is projected forward through the model apertures and onto the
output space of the scenario fragment’s final results. This combined, dilated mask identifies the
part of the results layer that must be recalculated. A final recursion across the DAG in which the
output mask is back-projected (with another binary dilation) from each model output to the
corresponding inputs is performed. This final mask-building process will use model latency to
take advantage of any temporary, intermediate result layers that may have been saved.

Next, any redundancies in the masks are removed (by “or” operations), and the area of
each mask is integrated. These areas, multiplied by difficulty estimates for each model, give the
system fairly accurate estimates of the size of the modeling tasks that are to be done.

If no single task is very large and the number of computers available is greater than the
number of tasks, or if all of the tasks combined add up to a small amount of work, then each
model is assigned to the computer most able to do it in order of model difficulty.

Conversely, if it is worthwhile to use a larger network of computers to execute some parts
of the scenario fragment in parallel, the work is divided into a large number of approximately
equal-sized small tasks. These tasks can be assigned to the computers best suited for them based
on task difficulty and bandwidth limitations among computers.

The pseudocode in Table 4-5 shows the compilation steps. The compiler in the
initial version of the Executive is not as complex as the compiler described here. Aperture
calculation with a rudimentary implementation will be adequate because all of the models to
be incorporated in the initial versions of the IFT-DSS will have delta function or space-
spanning apertures.

Table 4-5. Pseudocode for compiler component of the Executive.

MakeEffortTreeNode(target)
 For each parent of target
 MakeEffortTreeNode(parent) // RECUR
 getMaskOf(parent younger than target)
 project parent mask through aperture onto target mask
 end for
end MakeEffortTreeNode

BackProjectMaskOf(Target)
 For each parent of target
 project target mask through aperture onto parent mask
 BackProjectMaskOf(Parent) // RECUR
 Assign parent work phase
 based on phases of connection between target and Parent
 end for
end BackProjectMaskOf

COMPILER(run, target)
 Get scenario for run
 Make effort tree node(target)
 BackProjectMaskOf(target)
 For any redundant nodes
 Join mask by OR
 End for
 For each node
 Count mask size
 Estimate effort
 End for
 For each work phase
 Use approximate histogram equalization
 on the distribution of effort estimates
 to divide the work into multiple, small tasks
 end for
 Partition work space and assign data connections among tasks
 For each task, in inverse order of complexity
 Assign task to the most competent machine
 Remove machine from work phase’s resource pool
 End for
END of COMPILER

 4-17

4.1.6 Control Database

The Control Database
stores relational database
representations of scenarios and
their accompanying DAGs. The
Control Database provides data
to control GUI screen formattin
and model execution and is vital
to the behavior of the system.
The conceptual data model and
its influence on system behavior
will be discussed in this secti

g

on.

The data model’s purpose
is to represent a DAG for each scenario (see the conceptual Entity Relationship Diagram (ERD)
in Figure 4-5). By representing a scenario as a DAG, the Executive can resolve how and when
to execute models. The DAG will also be represented in the GUI to facilitate user navigation
through a scenario.

Models are fundamental building blocks of a scenario and are represented as nodes in a
DAG. A Model entity has inputs and outputs, which are linked together. These links are
represented as the data model Vector entity. To ensure that models’ inputs and outputs are
validly linked, each input and output maps to a ParameterGroup entity. A ParameterGroup is a
collection of related Parameter entity data. An Input ParameterGroup entity must match its
Output ParameterGroup entity to provide a valid link or vector.

Model inputs and outputs are fully defined before their use in a scenario by authors who
will register their models into the IFT-DSS system using the CDL tool discussed in Section
4.1.1. Subsequently, authors can then link these models into scenarios. Currently, the CDL tool
is an administrative tool used by system developers to add models and scenarios into the
IFT-DSS. Scenarios in the initial versions of the IFT-DSS will be created, loaded, and managed
by the database administrator.

The Navigator tool queries this database and uses the results to control the interactive
processing of scenario runs and editing of run data. The Executive queries this database for
scenario data and compiles this data to control processing. Once completed, the Executive stores
performance information in the database.

The Control Database is denoted by the letter F in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Control Database is denoted by the letter F in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Control Database is denoted by the letter F in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

 4-18

Figure 4-5. Conceptual ERD for the Control Database.

The Navigator queries this database and uses the results to control the interactive
processing of runs and editing of data. The Executive queries the database for ALL of its data
related to the specified scenario. The Executive then compiles a segment of these data and
causes processing to be done. Once completed, the Executive updates the use counters and
performance tracking data.

 4-19

Figure 4-6. Conceptual ERD for subset of the Control Database to facilitate
efficient model execution.

Machines

In order for the Executive to decide how the execution of a model should be distributed
across available machines to maximize performance, the Control Database has tables (see the
conceptual ERD in Figure 4-6) describing how well each machine can execute each model
(Performance entity). The bandwidth capacity between machines (Bandwidth entity) is also used
in this calculation.

Templates

To maintain control over the Navigator’s GUI format, the Control Database includes
entities to map the vectors, parameter groups, and their parameters in a scenario DAG to UI
templates (see Figure 4-7). These templates are HTML documents with placeholders for
parameter inputs. This arrangement makes it possible to have customized GUIs for certain
scenarios. For example, given a model that takes in winds, moistures, and weather parameter
groups, we may have a scenario where all three of those parameter groups appear to the user on a
single screen.

 4-20

Figure 4-7. Conceptual ERD of user interface HTML templates.

 4-21

4.1.7 Navigator

The Navigator is a web
application that has two key functions:
(1) to enable users to visualize and
explore their data in the form of an
interactive map, and (2) to allow users to
edit data values. The tool will function as
a data input mechanism (as discussed in
Section 3) for user-generated modeling
scenario runs. Mapping features allow
users to zoom in and out, pan in different
directions, switch between layers and
overlays, print maps, and save map
images.

In addition, users have the option to click on a point in the map or draw a polygon to
view attribute data for that point or polygon area. Users will also have the ability to edit map
attribute data associated with the GIS map layers in future versions of the IFT-DSS.

As shown in Figure 4-8, the interactive Navigator tool consists of four key
subcomponents: (1) a set of underlying GIS map layers, (2) a set of software system instructions
that tell the Navigator how to construct the map requested, (3) a map server software component
that builds the map, and (4) a subcomponent to add interactive features.

The Navigator is denoted by the letter G in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Navigator is denoted by the letter G in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Navigator is denoted by the letter G in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

Figure 4-8. Subcomponents of the Navigator.

The data source provides the underlying GIS map layers (i.e., political boundaries, relief,
land marks, etc.) for the base map. The map server software will support several data input
formats for vector and raster data. For raster data, Tiff/GeoTif and EPPL7 are supported by

 4-22

default, but other formats such as GRASS, Jpeg2000, and ArcInfo Grids are supported with the
help of the Geospatial Data Abstraction Library (GDAL). In the case of vector data, ESRI
shapefiles are the default; however, the software will be compiled to support and read from the
Scientific Database, GML files, delimited text files, and more with the vector data access portion
of the GDAL library (called OGR).

A set of instructions, in the form of a mapfile, tells the map server software component
where the data source is and defines how the map should be drawn and displayed. The mapfile
is where the map layers and the style of the map are specified. The map server is a software
component that constructs a map image given a data source and a set of instructions. It has been
implemented as a Web Map Server, generating maps in response to Web Map Service (WMS)
requests. The interactive features of the map are provided by a software subcomponent. This
subcomponent allows maps to be displayed in a web browser with no server-side dependencies.
It also implements industry-standard methods for geographic data access, such as the OpenGIS
Consortium’s WMS and Web Feature Service (WFS) protocols.

4.1.8 Project and Planning Database

The Project and Planning
Database stores administrative data
about fuels treatment projects. The
primary entities are the User and the
Project. Users can author models,
scenarios, and projects. Users establish
permissions for authored projects to
control access by other users to their
projects and the reports they have
generated. Users can act as planners
and use projects they have access rights
to. A conceptual ERD modeling the
relationships is shown in Figure 4-9.

se

This database supports the Planner web application described in Section 4.1.9. Future
versions of the IFT-DSS will allow Projects to be accessed by one or more planners. Projects are
created by one or more authors, as are the models and scenarios that make up a project. Project
authorships are used for managing three kinds of permissions: Project Owner (can do anything),
Contributor (fewer privileges than an owner), and Read-Only (can view a project’s details but
not make changes to it).

A project will also need to reference data in the spatial data system. For example, a
project has its area of interest (e.g., Yellowstone National Park). The properties of this area (e.g.,
elevation, slope, etc.) are stored entirely in the spatial data system, but a project must reference
this area uniquely so that its properties can be retrieved from the spatial data system. See
Section 3 for a description of the user experience that corresponds to this database.

The Project and Planning Database is denoted by the
letter H in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

The Project and Planning Database is denoted by the
letter H in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

The Project and Planning Database is denoted by the
letter H in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

 4-23

 4-24

Figure 4-9. Conceptual ERD for Project and Planning Database.

4.1.9 Planner Session Engine

The Planner Session
Engine manages activities in
the IFT-DSS, which include
creating a new project or
run, loading an existing
project or run, sharing a
project, and various project
management tasks.

Once the user has
created a project by defining
the run scenario and the area
of interest, he or she can
launch the Navigator, which
presents dynamically generated screens, tabbed navigation, and a scenario graph. The user can
then execute runs through the scenario.

The Planner Session Engine is denoted by the letter I in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Planner Session Engine is denoted by the letter I in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Planner Session Engine is denoted by the letter I in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

After completing the scenario the user can view results, generate reports, and share the
project with other users. A more detailed description of the user experience is presented in
Section 3.

Report Generation

When a project reaches a certain point, planners will be ready to compile a report for the
project. In the case of a Prescribed Fire Plan report, there exists a Word document template.
Early versions of the IFT-DSS have limited ability to generate reports; however input and output
data can be easily exported to Microsoft Office products (i.e., Excel). In future versions of the
IFT-DSS, selected sections of a Prescribed Fire Plan report will be provided as blocks of free-
form text. The Project and Planning Database will retain this text so that planners can enter the
text while logged on to the IFT-DSS and save it for later sessions and ultimately for report
generation.

Some of the sections of these reports contain values produced or consumed by certain
models (e.g., flame length). Those values, stored in the spatial data system, will be retrieved at
report generation time. Users can capture tables, map and graph snapshots for their reports using
the Navigator. For the specific case of a Prescribed Fire Plan report, users can choose to
associate such outputs with a report so that the generated Word document will include these
snapshots.

4.2 INTERFACES

This section describes the communication among the principal components of the SOA.
The interfaces, numbered as in Figure 4-1, are (1) Model Data Exchange, (2) Model Control,
(3) Sequencer Control and Monitoring, (4) Executive Scenario Polling and Feedback,
(5) Executive Launching and Progress Reporting, (6) Map and Data Presentation Interface, and
(7) Web Page Generator and Database Interface. The interfaces can also be listed as follows:

1. Data Interface ↔ Model Adaptors

2. Executive ↔ Model Adaptors

3. Executive ↔ Data Interface

4. Executive ↔ Control Database

5. Executive ↔ Navigator

6. Navigator ↔ Scientific Database

7. Navigator or Planner ↔ Control or Project and Planning Databases

The remainder of this section describes the communications protocols for each interface,
including a description of each message that passes between components.

 4-25

4.2.1 Model Data Exchange Interface

The model data exchange
interface provides a means of
communications between models and
the Data Interface. The exchange of
data among models is fundamental to
the service-oriented model execution
and is at the heart of the system. Upon
initiation, each model forms peer-to-
peer connections with the other models
(or the Data Interface) that supply or
depend on its inputs and outputs. These
connections use a simple, efficient
protocol.

The data are relayed in small packets. Each packet contains a single instance of each
member of a “ParameterGroup” from the Control Database (see Figure 4-11). Each packet also
contains a locator index unique to the model run, as well as a single data object. All of the
objects passed through a given channel are of the same type.

Output sockets buffer data for a reasonable period before the remote receiver begins or
resumes receiving data. No data are retransmitted. Packets may be received (and must be
processed) in any order. The packet’s run locator index uniquely identifies the data spatially
and/or temporally. The packet data may contain additional identifying (coordinate) values. It is
a logic error for an input channel to receive multiple packets with the same index unless they
contain identical data. Race conditions may otherwise result. The effect of these race conditions
is not specified.

The Model Data Exchange interface is denoted by the
number 1 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Model Data Exchange interface is denoted by the
number 1 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Model Data Exchange interface is denoted by the
number 1 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

4.2.2 Model Control Interface

The model control interface allows
communications between the Executive and the
model adaptors. The Executive and the model
adaptors communicate to enable connecting a
scenario’s models and to execute the scenario, or
a portion of the scenario. This protocol is
simple in terms of data transmission. It is
implemented either as a simple remote
procedure call (RPC) or as HTTP. The conten
of this exchange is, however, vital to the

t

performance of the system.

Once a scenario is compiled by the
Executive, the Executive sends startup messages to the models involved in the scenario. Each
startup message signals a model to begin listening for incoming data and provides the connection

 4-26

The Model Control interface is denoted by the
number 2 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

The Model Control interface is denoted by the
number 2 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

The Model Control interface is denoted by the
number 2 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
at

o
r

point information required by the model adaptors for hooking up the plumbing between adjacent
models in the scenario. A connection between two models is actually between specific input and
output streams of the two models, each stream communicating a different data set to or from
model. Moreover, each stream may have multiple connections. When a model completes
execution, it notifies the Executive and sends along performance metrics that the Executive w
relay to the Control Database and use to compile future work

 its

ill
. These messages between the

Executive and the Model Adaptors are shown in Table 4-6.

Table 4-6. Messages between the Executive and the Model Adaptors.

essages from Executive to Model AdaptorsM

puts, outputs) – invokes the model.

RunModel (in
Parameters:
inputs – list of input model stream connection info
 per each input:
 stream ID, IP addresses and port numbers, phas
outputs

e
 – output model stream connection info:

 stream ID, IP addresses a
 multiplexi

 nd port numbers, phase,
ng polynomial

eturns:

 report
eturns:

essages from Model Adaptors to Executive

R status message

GetProgress – requests progress
R progress message

M

te (runstats) – reports runtime performance measurements.

runStats

NotifyComple
Parameters:

 – runtime performance metric for this model on this network node

4.2.3 Sequencer Control and
Monitoring Interface

l and

m.

tion

separated into execution messages and compiler messages.

The sequencer contro
monitoring interface allows
communications between the Executive
and the Data Interface. The interactions
between the Data Interface and the models
(included in Section 4.2.1) are complex
and critical to the operation of the syste
The compiler process and execution of the
scenarios are realized by the conversa
between the Executive and the Data
Interface. The protocol that enables this
conversation is described in Table 4-7,

The Sequencer Control and Monitoring interface is
denoted by the number 3 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Sequencer Control and Monitoring interface is
denoted by the number 3 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Sequencer Control and Monitoring interface is
denoted by the number 3 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

 4-27

Table 4-7. Messages between the Executive and Data Interface.

Messages from Executive to Data Interface

Startup – gets Data Interface ready to receive messages.
Returns: status message

--- SCENARIO EXECUTION MESSAGES ---

EmitLayerRegion (maskID, layerID, connections, MPs) – tells Data Interface to send the part or

 layer that is to a set of streams, supplying each stream with its “fan-out” all of a map
Parameters:
maskID – the ID of the mask that specifies the region of the layer
layerID – the ID of the layer
connections – list of IP addresses and port numbers to emit to
MPs – list of multiplexing polynomials, one per connection
Returns: status message

ListenForResultLayer (maskID, layerID, connections, MPs) – tells Data Interface to send the part
or all of a map layer to a set of streams, supplying each stream with its “fan-out”
Parameters:
maskID – the ID of the mask to apply to result
layerID – the ID of the layer in which to store the result
connections – list of IP addresses and port numbers to listen from
Returns: status message

--- COMPILER MESSAGES ---

ApplyAperture (aperture, maskID) – tells Data Interface to mark, in the specified mask, the cells
that surround the already-marked cells, which are necessary to accommodate the specified

 aperture.
Parameters:
aperture – the dimensions involved in the map layer and their windows of
 interest
maskID – the ID of the mask to modify
Returns: status message

MakeMask (input layer, output layer) – tells Data Interface to calculate and store in the
Scientific Database a mask raster that specifies which cells in some data input layer are older

e cells in the corresponding data output layer. than the sam
Parameters:
input layer – data map input layer
output layer – data map output layer
Returns: the ID of the generated mask

JoinMasks askIDs) – creates a new mask that is a combination of the specified masks. (m
Parameters:
maskIDs – the IDs of the masks to join
Returns: the ID of the generated combination mask.

GetMaskSize (maskID) – queries for number of marked cells in the specified mask.
Parameters:
maskID – the ID of the mask to query
Returns: the number of marked cells

DeleteMask (maskID) – removes the specified mask from the Scientific Database.
Parameters:
maskID – the ID of the mask to delete

Messages from Data Interface to Executive

GetProgress – requests progress report

Returns: progress message

 4-28

4.2.4 Executive Scenario Polling and Feedback Interface

The Executive scenario and polling
interface allows communication between the
Executive and the Control Database. When
a user selects the output of a model in the
Navigator, the Executive is told the scenario
in question and the model’s output that was
selected. Subsequently, the Executive will
query the Control Database for the data it
needs to create a DAG of the scenario (a
node list and an edge list).

The Executive also queries the
Control Database for information about
machines that are available to execute the
necessary models for the given scenario.
With that information, the Executive compiles an optimal execution plan for the appropriate
scenario segment and then initiates execution. After execution of the segment is complete, the
Executive reports statistics back to the Control Database about how well machines executed
models in order to improve performance for future runs.

The protocol across this interface is SQL over the wire (e.g., JDBC). Because the
Executive uses recursion, SQL is used to get a simple and complete node and edge list of the
graph from the Control Database and the Executive does the rest of the work in a procedural,
imperative language (e.g., C++ or Java).

The Executive Scenario Polling and Feedback
interface is denoted by the number 4 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Executive Scenario Polling and Feedback
interface is denoted by the number 4 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Executive Scenario Polling and Feedback
interface is denoted by the number 4 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

4.2.5 Executive Launching and Progress Reporting Interface

The Executive launching and progress reporting interface allows communication
between the Executive and the Navigator. Some user actions in the Navigator will cause the
Executive to run and receive progress feedback indicated by the arrow numbered (5) in
Figure 4-1. This is triggered by a message from the Navigator that causes the Executive to
execute a scenario segment. This process consists of the Navigator sending an RPC to the
appropriate machine to launch the Executive.

This RPC also passes the scenario ID and the point in the overall process where
processing is needed. Next, the Executive compiles the proper scenario segment. Once
execution begins, the Executive will periodically report progress updates to the Navigator for
GUI presentation. In the case of a long execution, the Executive will notify the Navigator so the
user knows he or she may log off and receive notification (e.g., via email) when execution has
reached completion.

The mechanism for communication between the Navigator and the user’s web browser is
the Persistent Communications Pattern for Asynchronous JavaScript and XML (AJAX).

 4-29

4.2.6 Map and Data Presentation Interface

The map and data presentation
interface allows communication between
the Navigator and the Scientific Database.
Since a WMS-compliant geodata server is
used, the content of this interface is WMS.
WMS is a standard communications
protocol for map servers. It allows the use
of data from several different servers,
effectively creating a network of map
servers from which clients can build
customized maps.

WMS servers interact with their
clients using the HTTP protocol. The
WMS specification defines certain request
types, and for each of those requests defines a set of query parameters and associated behaviors.
The WMS-compliant server is able to handle at least two types of requests, GetCapabilities and
GetMap. A GetCapabilities request returns an XML document containing metadata about the
map server. A GetMap request returns an image of a map based on the input information.
Support exists for other requests such as GetFeatureInfo, DescribeLayer, and GetLegendGraphic.
A GetFeatureInfo request returns information about features at a query location. This specific
request type is used to get data when a user clicks on the map. The DescribeLayer request
returns an XML description of one or more map layers. Lastly, the GetLegendGraphic request
type returns a legend image (icon) for the requested layer including labels.

The data editor program (calibration tool) will request maps or other graphical data from
the Scientific Database. The Scientific Database will act on that request and deliver a map
(image) or other data. A fairly high bandwidth connection is needed because multiple users may
be requesting maps nearly simultaneously. Importantly, when the user edits the map or enters
data, the results are passed into the Scientific Database.

In addition to communicating map layer data, this interface must support the
communication of non-spatial data and a significant amount of system control. When a new run
is defined, information is sent to the Scientific Database about the run’s inputs so that, if these
data sets do not already exist, the Scientific Database can generate images with default data or
information extracted from another source.

The Executive Launching and Progress Reporting
interface is denoted by the number 5 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Executive Launching and Progress Reporting
interface is denoted by the number 5 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Executive Launching and Progress Reporting
interface is denoted by the number 5 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

 4-30

4.2.7 Web Page Generator and Database Interface

The Web Page Generator and
Database Interface governs the
communication between the application
components (Navigator and Planner) and
the relational databases (Scenario and
Project and Planning). The Control
Database stores information about each
scenario. Each scenario may have one or
more pages associated with it, and each
page may have one or more inputs (e.g.,
text fields, radio buttons, checkboxes,
drop-down selectors, maps) associated
with it. The inputs provide the content
for each page, and each page is a step in
the scenario workflow.

The pageCreator is an object between the Navigator user interface and the Control
database that handles the page generation for a specific scenario. On the basis of the scenario
chosen by the user, the pageCreator object queries the Control database for pages associated with
that specific scenario. For each page, the pageCreator object queries the database for an HTML
template (controlling screen layout and design) and inputs to be included on the screen. This
allows most pages of the Navigator to be dynamically generated and populated from the database
based on user selections.

The design styling of each Navigator screen, including placement of inputs, is controlled
by an HTML template. This template is stored in the Control database and associated with a
specific scenario/page, enabling customization of individual screens. The template contains
placeholder variables, which are replaced with appropriate inputs at runtime. This model allows
for generic types of templates to be used in the future. In addition, individual input styles are
controlled by values stored in the database for each input (e.g., width, font, minimum/maximum
characters, etc.).

The Project and Planning database stores information about projects, runs, and associated
scenarios. The Planner user interface interfaces with the Project and Planning database in a more
mundane, create-retrieve-update-delete (CRUD) fashion than does the Navigator in its interface
with the Control database.

The Web Page Generator and Database interface is
denoted by the number 7 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Web Page Generator and Database interface is
denoted by the number 7 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

The Web Page Generator and Database interface is
denoted by the number 7 in Figure 4-1

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

A A A

B B B

C D

E

F
G

HI

1

111

2

2 2 2

3

4
5

6

7

7

N
av

ig
a

to
r

4.3 BEHAVIORS AND INTERACTIONS

This section presents the principal interactions among components and, in combination,
the behavior of the system as a whole, in the form of swim lane diagrams. The swim lane is a
visual element used in process flow diagrams that depicts what or who is working on a particular
subset of a process. The swim lane flowchart differs from other flowcharts in that processes and

 4-31

decisions are grouped visually in lanes. Parallel lines divide the chart into lanes, with one lane
for each person, group, or subprocess. Lanes are labeled to show how the chart is organized.

4.3.1 Project Workflow

Figure 4-10 illustrates the interaction between the Planner/Navigator, a planner (end
user), the Executive, and services (model environment, models, and Scientific Database) for an
entire project.

Plan Project

Plan Scenario

Pick parameter
Values

Submit Scenario

Monitor Progress

Calibrate

Analyze Results

Finished

Done

Provide
Data
Form
Dialog

Compose
Scenario

And
Make Parameter
Control Forms

Log
Modeling

And
Calibration

Work

Produce
Summary
Reports

For
Each

Location
To
Be

(re-)
Analyzed

For
Each
Step

In
Scenario

Transform Inputs

Perform Model

Transform Results

Get Inputs

Put
Results

Publish

ExecutivePlanner/Navigator SERVICESUser

Compile
Scenario
Fragment

Fetch gDB Data

Store gDB Data

Figure 4-10. Overview of run execution.

 4-32

4.3.2 Executive Scenario Compilation

The swim lane diagram in Figure 4-11 depicts the communication between the
Navigator, Executive, and Control Database when a scenario segment needs execution.

Figure 4-11. Swim lane diagram of the Navigator, Executive, and Control
Database interaction.

4.3.3 Executive Orchestration of Model and Scientific Database Interaction

Figure 4-12 illustrates the interaction between the Executive, Data Interface and
Scientific Database, and models, beginning with Executive compilation of a scenario segment.

 4-33

This interaction occurs after user action caused the Executive to begin and is essentially a drill
down into the “Execute Plan” step in the Executive swim lane in Figure 4-11.

 Data Interface &
Scientific Database

 Data Interface &
Scientific Database

Figure 4-12. Swim lane diagram of Executive, Data Interface and the Scientific
Database, and models interaction.

4.3.4 User Interaction with the Graphical User Interface and Database

Figure 4-13 illustrates the interaction between the user, the Navigator, the pageCreator
object (which handles the generation of scenario specific web pages), and the database that holds
the data necessary to create the web pages.

 4-34

Figure 4-13. Swim lane diagram of the user, Navigator (GUI), page creator, and
control database interaction.

 4-35

 4-36

4.3.5 User Interaction with the Web Map Service and the Scientific Database

Figure 4-14 shows how the User, WMS, and Scientific Database interact with each other.

WMSUser Scientific Database

Initiate
WMS

request

Define
input

values

Interpret WMS request
type

Read input values

Get data from data source

Generate output
View

output
Display output

Done

Figure 4-14. Swim lane diagram of the user, WMS, and Scientific Database
interaction.

5. TECHNOLOGIES

This section discusses specific technology choices for each component in the IFT-DSS
version 0.3.0. Flexibility in meeting the needs of the user communities is paramount to the
success of the IFT-DSS. Therefore, the hardware and software technologies selected were
primarily considered in the context of user community needs and to show the flexible nature of
the system. It is intended that this document be a “living document” because the design and the
implementation technologies may change during development. Such changes will be noted in
revisions to these specifications.

Given the SOA of the system, technology decisions can be made separately for most
components. Moreover, the architecture can accommodate a wide range of platforms and
network topologies, from all components running on a single machine to a dedicated machine or
cluster of machines for each component. Specific technology choices are based on a
combination of criteria, including quality, ease of use, interoperability, reliability, performance,
support, and cost.

We defer specifying network topology and many hardware requirements until we are
closer to deployment, at which time we will have gained knowledge of optimal configurations.

5.1 MODELS AND MODEL ADAPTORS

The models are the components that process the parameter data. The Model Adaptors are
the components that enable models to be “plugged in” and that direct parameter data into and out
of the models. Models and Model Adaptors are described in sections 4.1.1 and 4.1.2. Each
model employed in the system will always run in process with, and hence on the same box as, a
Model Adaptor.

OPERATING SYSTEM: Windows and Linux

It is incumbent on the system to accommodate models embedded in pre-existing
programs that were developed to run on specific OS platforms, so both of these platforms must
be deployed to host the models.

PROGRAMMING LANGUAGE: Java, C++

Wrapped models (Type B in section 4.1.2) are in pre-existing executable programs, and
external models (Type C) are services, so the issue of programming language for these two
methods is moot. Subclassed models (Type A in section 4.1.2) require that a specific (object-
oriented) programming language or languages be supported. We currently support Java. The
IFT-DSS will also support C++, Python, and other languages in the future. This means that two
versions of the model adaptor host program (which make up the model parent class) shown on
the left side of Figure 4-3 have been developed using Java.

 5-1

5.2 SCIENTIFIC DATABASE

The primary function of the Scientific Database is to manage and serve the data that are
generated and used by the models. Whereas a large fraction of these data are spatially
distributed, the unique features of a GIS database are needed. Conversely, a large fraction of
these data are aspatial. The data server must effectively combine the features of a GIS database
with those of a fast data server, and be able to present both types of data. The Scientific
Database is also used to manage and display the spatial data in the form of interactive maps as
referenced in sections 4.1.3 and 4.1.7.

OPERATING SYSTEM: Linux

There exists a large quantity of open source resources that address similar problems. We
also have access to similar tools that are currently in use by members of our user community
(e.g., WFDSS). Linux is the preferred OS for these resources and tools.

GIS SOLUTION: MapServer, OpenLayers

MapServer in combination with OpenLayers has been selected as the GIS data and
mapping solution. MapServer is an open source platform used to publish spatial data and
interactive mapping applications to the web. It was chosen because of its many features, which
include advanced cartographic output, support for popular scripting and development
environments, cross-platform support, support of numerous Open Geospatial Consortium (OGC)
standards, availability of a multitude of raster and vector data formats, and map projection
support. OpenLayers is a pure JavaScript library used to display map data in web browsers, with
no server-side dependencies.

We have developed prototype map products for visualization in Google Earth and
eventually in FireGlobe.

5.3 DATA INTERFACE AND EXECUTIVE

These components are the inner “clockworks” of the system. The Data Interface interacts
with the Scientific Database to pass input data to the models and to store model output data. The
Data Interface also provides data filtering calculation services to the Executive. The Executive is
the program that compiles scenarios and triggers execution of scenario “runs.”

OPERATING SYSTEM Linux

PROGRAMMING LANGUAGE Java

Linux and Java are both robust, reliable, enterprise-class technologies, and well suited
for these non-GUI components. Java is cross-platform, which means that Java-based
components can easily be re-used for any subsequent deployments to other OS platforms.

 5-2

5.4 PLANNING AND CONTROL DATABASES

OPERATING SYSTEM Windows

RDBMS Microsoft SQL Server

The Planning and Control Databases require a relational database management system
that can scale with future growth. Microsoft SQL Server was selected as the database for the
IFT-DSS proof-of-concept system.

5.5 NAVIGATOR AND PLANNER

These are the user-facing parts of the system; they present a browser-based, interactive
graphical user interface. The Navigator and Planner interact with the control and planning
databases to manage projects, work scenarios, and so on. The Navigator interacts with the
Scientific Database and the Executive to view, edit, and generate new parameter data.

OPERATING SYSTEM Windows or Linux

WEB SERVER Apache Tomcat

Tomcat is a common environment for hosting web applications. STI has experience
developing, maintaining, and hosting web applications in this environment.

PROGRAMMING LANGUAGE Java, JSP, HTML

Java was selected as the server-side language for several reasons including the following:
it has become a commonly used and understood language, and this choice will facilitate future
modifications of the system by various parties; it can be run on multiple platforms and web
servers; and there are no software licensing fees.

5.6 HARDWARE

IFT-DSS version 0.3.0 is currently being hosted on two identical Dell PowerEdge R410 servers
with the following specifications:

 Dual quad-core E5520 Xeon processors

 2.26 GHz clock rate

 24 GB memory

 1.5 TB RAID5

5.7 FUTURE SOFTWARE TOPOLOGY FOR THE IFT-DSS

Figure 5-1 illustrates the software topology for the first production version (version 1.0)
of the IFT-DSS scheduled for release in June 2011.

 5-3

 5-4

Figure 5-1. Software topology for the first production release (version 1.0) of the
IFT-DSS scheduled for release in June 2011.

6. REFERENCES

Anderson C.B., Dye T.S., Ludewig S.A., Chan A.C., Gray E.A., and Prouty J.D. (2002)
Functional design specification document for the AIRNow technical user web site.
Design specification document prepared for U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards, Research Triangle Park, NC, by Sonoma
Technology, Inc., Petaluma, CA, STI-902087-2287-DSD, December.

Drury S.A., Rauscher H.M., Raffuse S.M., and Funk T.H. (2009) Refined work flow scenarios
and proposed proof of concept system functionality for the interagency fuels treatment
decision support system. Final report prepared for The Joint Fire Science Program, Boise,
ID, by Sonoma Technology, Inc., Petaluma, CA, and Rauscher Enterprises LLC,
Leicester, NC, STI-909029.02-3655-FR, July.

Funk T.H., Corman R.G., Reed J.E., Raffuse S.M., and Wheeler N.J.M. (2009) The Interagency
Fuels Treatment Decision Support System (IFT-DSS) software architecture. Software
architecture design prepared for the Joint Fire Science Program, Boise, ID, by Sonoma
Technology, Inc., Petaluma, CA, STI-908038.04-3565, March.

Gray E.A., Prouty J.D., Ovard C.D., and Wheeler N.J.M. (2004) Data management system for
aerometric data. System documentation prepared for Bay Area Air Quality Management
District, San Francisco, CA, by Sonoma Technology, Inc., Petaluma, CA, STI-903730-
2602-SD, September.

Palmquist M.S. (2008) Working summary of the SEI’s engagement with the Joint Fire Science
Program. Report prepared for the U.S. Department of Defense by the Acquisition Support
Program, Software Engineering Institute, Carnegie Mellon University, April.

 6-1

	1. INTRODUCTION
	1.1 PURPOSE
	1.2 DOCUMENT ORGANIZATION
	1.3 IFT-DSS NAMING CONVENTION
	1.4 REFERENCES TO OTHER RELEVANT DOCUMENTS

	2. SYSTEM OVERVIEW
	2.1 SERVICE ORIENTED ARCHITECTURE
	2.2 RATIONALE FOR A SERVICE ORIENTED ARCHITECTURE APPROACH
	2.3 IFT-DSS USERS AND STAKEHOLDERS
	2.4 OVERVIEW OF THE FUELS TREATMENT DECISION SUPPORT PROCESS
	2.5 OVERVIEW OF THE IFT-DSS ARCHITECTURE
	2.5.1 Architectural Components
	2.5.2 Key Architectural Features and Functions

	3. THE IFT-DSS USER EXPERIENCE
	3.1 LOGGING INTO THE IFT-DSS
	3.2 PHASE I – PROJECT SETUP AND PLANNING
	3.3 PHASE II – SOFTWARE MODEL EXECUTION AND ITERATIVE ANALYSIS
	3.4 PHASE III – PROJECT FINALIZATION, DOCUMENTATION, AND ARCHIVE

	4. TECHNICAL SOFTWARE DESIGN
	COMPONENTS
	4.1.1 Models
	4.1.2 Model Adaptors
	4.1.3 Scientific Database
	4.1.4 Data Interface
	4.1.5 Executive
	4.1.6 Control Database
	4.1.7 Navigator
	4.1.8 Project and Planning Database
	4.1.9 Planner Session Engine

	4.2 INTERFACES
	4.2.1 Model Data Exchange Interface
	Model Control Interface
	Sequencer Control and Monitoring Interface
	4.2.4 Executive Scenario Polling and Feedback Interface
	4.2.5 Executive Launching and Progress Reporting Interface
	4.2.6 Map and Data Presentation Interface
	4.2.7 Web Page Generator and Database Interface

	4.3 BEHAVIORS AND INTERACTIONS
	4.3.1 Project Workflow
	4.3.2 Executive Scenario Compilation
	4.3.3 Executive Orchestration of Model and Scientific Database Interaction
	4.3.4 User Interaction with the Graphical User Interface and Database
	4.3.5 User Interaction with the Web Map Service and the Scientific Database

	5. TECHNOLOGIES
	5.1 MODELS AND MODEL ADAPTORS
	5.2 SCIENTIFIC DATABASE
	5.3 DATA INTERFACE AND EXECUTIVE
	5.4 PLANNING AND CONTROL DATABASES
	5.5 NAVIGATOR AND PLANNER
	5.6 HARDWARE
	5.7 FUTURE SOFTWARE TOPOLOGY FOR THE IFT-DSS

	REFERENCES

