
Project Title:

Conversion of BlueSky Framework into collaborative web service
architecture and creation of smoke modeling application

Announcement for Proposals: Requested proposal April 2008
Principal Investigator: Narasimhan K. (‘Sim’) Larkin
Affiliation: US Forest Service Pacific Northwest Research Station
Address: 400 N. 34th St #201, Seattle, WA 98103
Phone: 206-732-7849; Fax: 206-732-7801
Email: larkin@fs.fed.us
Federal Cooperator:

Narasimhan Larkin, US Forest Service PNW Research Station
400 N. 34th St #201, Seattle, WA 98103
Email: larkin@fs.fed.us; Phone: 206-732-7849; Fax: 206-732-7801

Federal Fiscal Representative:
Duration of Project: 1 year (6/2008 through 6/2009)
Start Date
End Date

06/01/2008
05/31/2009

Annual Funding Requested:
Total JFSP Funding Requested:
Total Value of In-Kind Contributions:
Abstract:

This project will address the need for a collaborative architecture for scientific modeling that allows various
scientific models to easily interact. By designing such a system to be modular as well, advantages derived from
separating decision support user interfaces from scientific models can also be realized. The need for such a system
has been documented by recent studies such as the JFSP Smoke Roundtables and the JFSP review of tools done by
the Software Engineering Institute.

This project addresses these needs by modifying the BlueSky Modeling Framework so that it can better serve as a
collaborative architecture, and then utilizing this architecture to create an advanced application that could not
otherwise be created.

The BlueSky framework will be light-weighted so that it can better serve as a collaborative architecture. Models
currently contained within BlueSky will then be wrapped into stand-alone modules. These modules will further be
wrapped into web-services able to be run remotely through web-service protocols on the internet. This step
removes the need for local installation and solves distribution issues.

Once this is completed a unique game-playing application where a user can step by step walk through all of the
model steps in the framework from fire information to smoke impact maps. At each step the user can choose the
model they want to use. The resulting application will provide consistent access to all of the models in the BlueSky
framework, and will allow users to “game-play” fire consumption, emissions, and smoke impact scenarios in real-
time – a capability never before developed. Changes made in fire size, fuel loadings, or any other data will
automatically be carried through all the remaining steps, thereby allowing users to see the implications of these
changes.

This application will be useful for both RX-410 classes just learning about the various component models, as well
as for decision support for managers needing to run multiple scenarios and understand the implications of various
choices.

PI and Federal Cooperator: /s/ Narasimhan Larkin
Federal Fiscal Representative: Not signed

- 1 -

I. INTRODUCTION
1. Project Justification
Several major efforts to organize fire and smoke research have been undertaken recently by the Joint Fire
Science Program. The Smoke Roundtables (JFSP, 2007) have pointed out the large number of user
interfaces developed in conjunction with various scientific models, and the problems associated with the
lack of compatibility between the application systems that has resulted. The Carnegie-Mellon based
Software Engineering Institute’s (SEI) review of JFSP tools has pointed out the need for a collaborative
scientific modeling architecture to make currently diverse models inter-operable. Specific advantages of a
collaborative architecture are:

1. To separate the development of scientific models from user interfaces (UIs);
2. To allow for integrated UIs capable of driving multiple models;
3. To allow for faster development of models and UIs;
4. To allow for direct comparison between models; and
5. To allow for faster transition between developed models and operational applications.

This project is designed to produce an example collaborative scientific modeling architecture based on the
BlueSky Modeling Framework (Larkin et al, 2008), and to highlight the advantages of such a system
through the creation of a unique game-playing application. The BlueSky Modeling Framework was
identified in the SEI report as a leading example of modularizing and connecting scientific models, and a
likely candidate for creation of a collaborative architecture.

Figure 1: Modeling steps in the BlueSky framework as they will be implemented in the collaborative
architecture developed here. Under each modeling step is a list of the models that will be utilized here.

- 2 -

2. Project Objectives
This project has several objectives that can be grouped into two categories: those focused on the
development of a collaborative architecture, and those focused on the utility of the applications created.

With respect to the collaborative architecture:

1. Modify the BlueSky Framework to lightweight it to serve as a collaborative architecture;
2. Create individual stand-alone modules for each of the models in BlueSky;
3. Wrap these stand-alone modules so that they can function through standard web-service

architecture internet protocols;
4. Demonstrate the power of such an architecture; and
5. Document how to utilize such an architecture to create decision support applications.

Figure 2: Crude sample drawing (for example purposes only) of prototype web application. Users would be
able to select from any of the models available at each step. If a user changes information or model choice at
an earlier step, information would automatically update. Users would be able to see the results of all of the
model choices at each step before picking between them. The web application would use standard
JavaScript/AJAX/web-service technology (similar to that used in large scale applications such as Gmail,
Yahoo! Maps, etc…).

- 3 -

With respect to the applications created for this proposal:

1. Create simple applications that can serve as examples;
2. Create an application that shows how both local and remote models can be combined;
3. Create a game-playing smoke modeling application useful in teaching RX-410; and
4. Demonstrate the full capabilities of this type of architecture.

3. Background
The BlueSky Modeling Framework is a software architecture that contains fire consumption, fire
emissions, time profile, plume rise, smoke trajectories, and smoke dispersion models. The BlueSky
Framework was recently completely rewritten under a grant from NASA making it completely modular
with defined modeling steps and defined data structures between the modeling steps. BlueSky takes fire
information and weather information and runs through the following steps to model smoke impacts:

- Fuel Loading
- Fire growth
- Total consumption
- Time rate of consumption
- Speciated emissions
- Plume rise
- Smoke transport and dispersion

Due to its modular nature, BlueSky incorporates multiple different equivalent models at each step, and the
user can pick any of the available models at each step independently from choices at other steps. The
result is that there are currently 1296 different model pathways possible within the BlueSky Framework.

BlueSky also contains core framework code that makes it easy to develop, define, and utilize new
modules. BlueSky’s core framework also allows for distributed processing across multiple computers,
and other more advanced functionality.

This project will lightweight the core framework code in order to make it as simple as possible for others
to take and utilize. (As defined in the Appendix, this will create a “Minimal Platform” version of
BlueSky.) It will also wrap a number of the existing models within BlueSky into stand-alone modules
that can easily be chained together. These stand-alone modules will also be wrapped so that they can be
run remotely via web-service protocols on the internet.

II. METHODS
This project will require 4 things:

1. Revising the BlueSky Framework to serve as a lightweight collaborative architecture;
2. Wrapping the existing models into web-services;
3. Creating sample applications and documentation; and
4. Creating an advanced game-playing smoke modeling application.

Revising the BlueSky Framework

The BlueSky Framework currently contains features not needed for individually wrapped models (see
“Full Platform” option in the Appendix). We will remove some of the most advanced features (load-
balancing across various machines, etc…) and reduce the framework to its most basic function set needed

- 4 -

to maintain ease of use. This work, while conceptually simple, is expected to be 1/3 to ½ of the amount
of effort required for this project. It is a “one-time-only” effort, with the benefits (the creation of a
“Minimal Platform” option in the Appendix) being usable on an on-going basis afterwards.

Web-service versions of existing models

Each model contained within the BlueSky Framework will then be wrapped into its own stand-alone
version that can be used via the command line and can also be incorporated web-service version. Web-
service versions of the models listed in Figure 1 will be placed separately on specially purchased servers.
A web-service allows a remote user to send the server the needed input information over the web; the
server then runs the model and returns the model output. Documentation will be produced to show how
both the stand-alone and web-service versions were produced, and explaining how others can incorporate
their models into the new BlueSky collaborative framework produced here.

Note that because these web-service versions will utilize the standardized data structures defined in the
BlueSky Framework, it will be easy to switch between various models of the same type (e.g. CONSUME,
BURNUP, EPM and FEPS for total consumption) in any given application.

Simple applications and documentation

Note that alone, the web-service framework is not user friendly but requires a front-end to handle the data
visualization. Fortunately, by placing the computational and database requirements on a remote server,
applications can be developed that are extremely lightweight and focus only on the user interface (either
as a web page or as a simple desktop program). We will create a sequence of extremely simple
applications that show how this can be done, and show how an application can switch between utilizing a
remote web-service model and a locally installed model (for use when not connected to the internet).
Documentation will be produced to help anyone interested in building their own specialized application.

Advanced game-playing smoke modeling application

In order to show the full capabilities of this type of collaborative modeling architecture, we will create a
unique, advanced, game-playing application for smoke modeling initially targeted at RX-410 classes but
also useful for decision makers. An example of the application front end is shown in Figure 2.

The application would allow users to enter a fire size and location and would then lead the user through
all of the steps in the BlueSky smoke modeling pathway up to and including the creation of smoke impact
maps for the fire. At each step the user will be shown all of the various outputs from all of the various
models (e.g. fuel loadings from LANDFIRE, FCCS, NFDRS, and Hardy) and allow them to choose one
before continuing to the next step. Outputs would include: fuel loadings, total fire consumption, fire
emissions, and smoke impact maps, although users could stop at any point. By seeing the outputs from
all of the model choices at each step, users would be able to see the inter-model variability; by altering the
model choices or information at any point, users would be able to see the effects automatically adjust any
of the remaining modeling steps.

Results would be able to be shared through unique URLs that could be emailed. Variants of this
application could be created by limiting the choices to a specific pathway (e.g. for specific decision
support). The game-playing application may have a user-login and user preferences section.

III. Project Duration and Timeline

This project will last 1 calendar year, June 1, 2008 through May 31, 2009.

A detailed breakdown of milestones and tasks and a timeline is presented in Section VIII, Deliverables.

- 5 -

IV. Project Compliance – NEPA and Other Clearances
This project will conform to all required clearances, as well as all to safety, health, and legal standards.

V. Budget
VII. Science Delivery and Application
The applications created here will be delivered through the internet. As far as the overall architecture
goes, this entire project can be considered to be an science delivery and application. The goal is to pave
the way for the next generation of science delivery and application where science models are separated
from their user inputs. This will allow the same tailored and customized user interface to be used no
matter what model the user prefers. This project’s output will also serve to test the NWCG’s IT
investment process. Documentation will be created to allow users to utilize the applications created here
for RX-410 classes and decision support, as well as to allow scientists to add their own models.

VIII. Deliverables
Table 3. Deliverable, Description and Delivery Dates

Deliverable Type Description Delivery Dates
Website Web-service versions of models in BlueSky Framework Initial: 10/08

Final: 2/09
Non-Refereed
Publication

Documentation for utilizing web-services to create applications Initial: 11/08
Final: 5/09

Website Website showing simple example applications and documentation Initial: 11/08
Final: 5/09

Website Game-playing smoke modeling application Initial: 1/09
Final: 5/09

Peer-reviewed
publication

Journal article or peer-reviewed GTR detailing the system and
application

Submitted: 5/09

Non-Refereed
Publication

Final Report 5/09

Presentation At National Air Quality Conferences Spring ‘09
Presentation At BlueSky Stakeholders Meeting Spring ‘09
Presentation(s) At national fire conferences Spring through Fall

‘09
Invited
Presentation

At National Weather Service Air Quality Workshop Fall ‘09

Training Sessions Incorporated into RX410 classes where BlueSky is taught Winter/Spring ‘09

Timeline Narrative:
Year 1: June 2008 – May 2009

• The application and server side work will proceed in parallel. The first applications available
will be the example applications, with the full game-playing smoke modeling application to
follow. Significant time is allowed for user interface and functionality improvements based
on user feedback.

• Presentations and training on the application will occur in the course of other BlueSky
presentations and RX-410 trainings that the AirFire routinely is involved with.

- 6 -

IX. Expected Benefits of the Proposal
The web-service models will:

• Serve as a prototype example of a collaborative modeling environment;
• Utilize standard data inputs and outputs;
• Be expandable with additional models and model types later; and
• Be available for other applications combining the models in different ways.

The web-based applications will:

• Show the power of having the models standardized and web-accessible;
• Provide an example for other applications;
• Provide a unique, novel game-playing application useful in teaching RX-410 smoke

management classes; and
• Allow decision makers in need of smoke impact scenarios to see results in real-time.

Further, the process will serve as an example for the National Wildfire Coordinating Group (NWCG)’s IT
Investment Process, although this will likely occur after the final deliverables to the JFSP.

X. Qualifications of the Investigators
The curriculum vitae of the PI, Dr. Narasimhan Larkin is attached. A summary of the key project
personnel and their responsibilities are listed in Table 4.

Table 4. Personnel Involved in Project, and their Responsibility
Personnel Responsibility
Dr. Narasimhan (Sim) Larkin (USFS) Project Lead
Dr. Robert Solomon (USFS) Lead on technology application and testing.
Dr. Tara Strand (USFS) Co-Lead on testing; lead on usage documentation.
Sonoma Technology, Inc. (STI) staff

- Daniel Pryden, Neil Wheeler, Sean
Raffuse, etc…

Contracted to perform programming and web design.

Sim Larkin is a senior scientist with the USFS AirFire team and serves as the BlueSky Project Lead. He
was the original software designer of the BlueSky framework and is co-lead of the NASA BlueSky
rewrite. He has led and worked on several model intercomparison studies.

Robert Solomon is the head BlueSky modeler and has extensive experience working with numeric
models of all kinds. Tara Strand is an air quality engineer with experience in statistical analysis of
model/observation evaluations.

Other AirFire staff will contribute to testing the applications and consult on application creation, led by
the personnel listed above. AirFire is a premier smoke modeling research group, with products such as
the BlueSky smoke modeling framework used nationally and internationally by researchers and
operational personnel.

STI is a nationally known air quality consulting company that works extensively for the EPA and state
and local agencies. STI runs the EPA’s AirNow program and performs operational forecasting of air
quality for a number of cities and counties across the country. AirFire and STI have a lengthy history of
successful collaboration. STI has developed many web applications including the EPA’s successful
AirNow Tech system.

- 7 -

XI. Literature Cited
JFSP, 2007: Smoke and air quality roundtables, research needs and assessment. Joint Fire Science

Program. 16pp. Available at http://www.firescience.gov
Larkin et al., 2007: The BlueSky smoke modeling framework: design, application, and performance.

IJWF, in review.

- 8 -

Appendix: Designing a collaborative system for scientific computing

This appendix is added as a primer on some of the concepts in use in the proposal. The proposal is
designed to both create a prototype “Minimal Platform” option, and to create an application showing how
such a system works.

A1. Introduction

Scientific models are generally created by groups working in isolation to answer questions first defined
by outside circumstances, and then later refined by the scientists themselves. The result is that the models
generated end up with specific input and output requirements, both in terms of data and formats, not
directly compatible with other models. This creates a challenge for anyone wishing to utilize the models
in combination or wishing to directly compare across models of the same class. Because of this, several
negative outcomes result:

1. Comprehensive analyses comparing and evaluating similar models are not performed
hindering advancement of the science;

2. Different models become coupled to different decision support tools confounding the analysis
of the best scientific model with the attached user interface;

3. User choice becomes both too great (because of the number of competing decision support
interfaces to learn), and too confined (because the user interface choice limits the choice of
underlying model);

4. Development of decision support tools requiring combinations of models is hindered.

To overcome these issues the use of a set of standards defining a collaborative system architecture for
connecting scientific models can be created and utilized. Note that such a collaborative system applies to
only the computational modeling and not to the user interfaces, although implementation of such a
collaborative system on the modeling side also has benefits separating models from their user interfaces.

There are many different possible ways to implement a collaborative system, each of which carries its
own advantages and disadvantages. Below we examine 3 specific choices:

A. Open Standards: a minimal set of interface standards only;
B. Minimal Platform: adds a relatively light-weight set of core platform code that adds some

minimal functionality; and
C. Full Platform: adds a more complete and complex core platform code with considerable

functionality.
Note that each of these possibilities requires defining a set of model steps and data input / output formats.
While the Open Standards option does little more, the Platform options also add in some standard
functionality through shared core platform code. We therefore first discuss how to define model steps
and data formats, and then discuss the platform choices.

We also discuss how such a system can be used to promote the technology transfer from research to
operational application and the advantages and disadvantages of each option for this purpose.

A2. What is a “model”?

When discussing a collaborative platform for scientific modeling, the first question that must be
confronted is what is meant by a “model.” While scientific models are often categorized as dynamical or

- 9 -

empirical, here we are more concerned about the internal layers of the model. At their core, scientific
models are simply complex calculators reading in some pieces of information and outputting others in
order to answer a specific question. In question is the number of usefully distinguishable questions each
model answers. For example, a model might read in fire location, then calculate fire growth for the day,
then calculate the amount of carbon emissions from the fire for the day. Because the model has chained
together these steps linearly, and because each of these steps has useful output of its own, we can consider
this model to be “compound model” made up of several sub-models or “base models” that compute the
individual steps (fire growth from fire location, carbon emissions from fire growth). Given this, the key
question becomes what defines useful output, which brings us to how to define standard model steps.

A3. Defining model steps and interfaces

Standard model steps define the input and output points of models contained in a collaborative system.
Because they define the output points, and therefore the information available from the models, they need
to be defined to be maximally useful, both from a scientific as well as an applied point of view.
Therefore, in creating a list of modeling steps both user groups as well as scientists should be consulted.
This is most easily done by first examining the known application uses and then translating them into
specific scientific modeling steps. For example, in the wildland fire area the National Wildland Fire
Coordining Group, representing users, can define the information needed for specific decision support
applications, and then knowledgeable specialists and scientists can further refine this information into the
smallest useful steps – essentially, the outputs of the base models in the field. One example can be found
in the BlueSky Smoke Modeling Framework, which encompasses multiple applications – fire
consumption, fire emissions, fire smoke impacts, and more – by subdividing these into the specific step
questions (see Figure 1):

• How much does the fire grow each day? (fire growth)
• How much fuel does the fire consume each day? (total consumption)
• How much fuel does the fire consume each hour via flaming? Via smoldering? (time rate

consumption)
• What speciated emissions and heat does the fire produce each hour? (emissions)
• Where does the smoke go vertically? (plume rise)
• Where does the smoke end up, and what are the concentrations? (trajectories and dispersion)

Note that some of these steps are directly defined by applications (e.g. total consumption, smoke
concentrations), while others, even though they are needed for later calculations, are more scientific in
nature (e.g. plume rise). It is worth noting that the list of modeling steps does not mean that all models
must produce these outputs – some models may be able to bypass some of the steps by using novel
parameterization schemes. In the case of the BlueSky Framework this is most easily seen in satellite
estimates of fire emissions that go directly from overall fire information to fire emissions without needing
to go through the intermediate steps first.

By choosing the list of model steps judiciously, they can define a list of outputs usable for a large number
of known and not yet considered applications, but not be so many that as to become unwieldy. Reducing
the total number of modeling steps can also be accomplished by recognizing that the data at each step can
contain both standard (required) as well as extra (optional) information.

Note that defining model steps by definition defines the location of interfaces between the steps (Figure
2). In fact, it is these interfaces that are the most important, as a given model can skip interfaces but must
end at some interface. Data formats are then defined for each interface.

- 10 -

A4. Defining data formats

One of the most important steps in creating a collaborative platform is to define standards for data at each
model step interface. The data format standard is the same for both input and output at this interface. The
data formats are best thought of a an interface standard – if you end up producing output at this level it
will look like this, and if your model needs input from this level it will receive it the same way. Creating
such an interface is done on several levels: unit standards, file formatting, naming conventions, and
required and optional fields. In most cases, only one standard should be created for each model step level
(e.g. total fire consumption) and this standard should be used both for models producing this information
(as output) as well as for models requiring this information (as input).

The simplest decision, although an important one, is units. Generally this is as easy as choosing metric or
english units, and in general it is better to choose to use metric units for scientific models. One important
note is that this is the unit convention for the model steps as used by the models, and not necessarily for
the user interface. Lots of users will prefer english or even non-standard units – it is the job of the user
interface to translate the data input in these units to the model standard format, and to translate the model
output format into the graphs, tables, and other display functions critical to making the information useful
to the user.

File formats are a more complex choice. The choice generally boils down to 3 options: human readable
and editable (e.g. comma separated value files), human readable and computer editable (e.g. XML), and
computer readable and editable (e.g. binary formats like NetCDF). In order to maximize the utility of the
system it is best not to generate a new standard, but to adopt existing standards whenever possible.
Comma separated value (CSV) formatted files are universally readable by everything from simple text
editors to Microsoft Excel, and standard utilities exist for every programming language to read in such
data. XML is a common standard for internet applications, and retains the advantage of being human
readable, but is difficult to human edit due to its complexity and sensitivity to small formatting errors.
XML is capable of representing relational data, however, that is more difficult in simple CSV format.
Binary formats like NetCDF allow for large quantities of data to be compactly stored and quickly
retrieved, but require reading and editing via specialized programs. Experience with the BlueSky
Framework has shown that even within the same collaborative system, different data structures require
the use of different file formats. For example, BlueSky uses CSV for simple data (fire location, total
consumption, etc…), and binary NetCDF for gridded model data (weather model and dispersion model
output).

Naming conventions are needed primarily for the fields within the data files, so that different models label
the same output the same way (e.g. as “total_consumption,” not “Consumpt., Total”). Once a list of
required and optional fields is generated, naming conventions are generally relatively simple, and only
require dissemination.

Having both required and optional fields defined for each model step allows for incorporation of new
model developments, and allows for model connections in ways that are beneficial when connecting
specific models but are not universal. This generally works as follows: a model will utilize the optional
data when available, but only needs to have the required data to run. An example would be requiring the
fuel loading data standard to have a total duff measure, but allowing it to optionally have multiple duff
layer information. A consumption model can then utilize the multiple duff layers if available, but will fall
back on default behavior if only the required total duff information is available.

A5. Open Standards option

- 11 -

The Open Standards option for creating a collaborative system is little more than the creation of the
standards for the model step interfaces and the definition of the data information and formats at each
interface (Figure 3a). Yet implementation of this system like all collaborative standards, also requires
one more factor: an authorizing entity. In other collaborative systems the interfaces are defined by
organizational consortia that then have processes for maintaining and modifying the standard over time.
An example is the HTML standard, used by all web designers and by all internet browsers, which is
maintained by the World Wide Web Consortia (http://w3c.org). As new tags are needed or old ones
become outdated this standard is then modified.

A major advantage of the Open Standards system is that it is extremely simple, and places the least
requirements on modelers and others. All that need be done is for model developers to utilize the
standard input and output data structure interfaces, thereby allowing others working to the standard to use
the resulting model output directly.

The primary disadvantage of the Open Standards system is that it does not help the model user to chain
together multiple models. The user must create the logic that takes the output file from one model and
feeds it to the next model. Note that this step is vastly simpler than it would be without the Open
Standard, however, as without the standard the user would also have to have knowledge of how to process
and reformat the data before it to the next model. While such processing is conceptually simple, it is
actually a huge deterrence in practical applications, and overcoming it is the primary benefit of adopting a
collaborative system.

A6. Minimal Platform option

In this option, in addition to the standards and authorizing entity utilized in the Open Standards option, a
set of core computer code – a platform – is also employed (Figure 3b). Models are wrapped in a way that
accesses this core computer code to perform certain functions.

The advantage of this option is that the core platform can perform several useful functions. In particular,
the following can be embedded in the core platform: (1) a sequence of utility functions for reading in and
writing out the standard data formats, (2) a sequence of utility functions for carrying out certain common
functions (for example, timezone and date handling), and (3) utility code for chaining together models.
The result is a system that allows for faster development of new models and model chains because the
researcher does not need to generate as much code on their own.

The disadvantage is that interfacing with this platform code can place hidden requirements on the model
developer, particularly with respect to choice of programming language and coding style. The result of
such requirements can be to discourage some model developers from adopting the standard. In the
minimal platform option approach, however, efforts are made to limit the scope of the platform in order to
reduce these inherent requirements.

A7. Full Platform option

In this option, a “heavy-weight” platform is utilized, in that a much larger platform codebase is developed
with more extended and specialized functionality (Figure 3c).

Advantages of such an approach vary based on exactly what functionality is embedded in the platform.
These will typically include: easy, standardized, and unified configuration processes; bundled software
installers; load-balancing across multiple processors and computers for faster run-times.

- 12 -

The disadvantage of this type of approach is that the larger codebase will require more and more in terms
of assumptions about the computer system being utilized, such as dependence on specific installed
libraries, etc… The result is an even greater demand on the model runner and the potentiality for
complex errors beyond the ability of the typical researcher to easily handle.

It is worth noting that the current BlueSky Framework (v3) is of this type. The BlueSky Framework
includes hooks for cross-computer load-balancing, a unified configuration structure for all of the models
contained within it, and a simple text file for choosing which models to run and outputs to produce.

A8. Applications for technology transfer

The approaches discussed here have several advantages for technology transfer stemming from the
separation of user interfaces from the model computations, and the use of standard model interfaces.
Because of these facts, user application development can happen separately from model development.
This means that fixes and improvements to the user application and the model can happen on separate
timelines, and that the best user application and the best model can be identified independently.

Models can be developed with user applications built-in. Indeed, the collaborative platforms discussed
here work best if the underlying scientific models are written to be run via the command line. The model
is then easily wrapped in the platform (if using one of the platform options), which also enables running
the model locally in conjunction with others, and remotely by automatic wrapping of the model in a web-
service (Figure 4).

Thin clients can be developed that focus on information input and display, not on running the models,
because that is taken care of by the platform (Figure 5). The thin client architecture can rely on a web-
server farm hosting the models as web-services, or can point to local installations of the models.

Utilizing a platform that automatically creates web-services out of the models offers the possibility of
faster technology transfer because the new or revised model code does not need to be pushed to local
machines. This means more uniformity because of the lack of versioning issues, and faster availability of
fixes and updates. Use of web-services also means that thin clients can be developed as web pages using
now standard JavaScript and AJAX functionalities. Examples of this type of application are found many
places on the web including web-based mail applications like Gmail and Yahoo! Mail.

- 13 -

Figure 2: Example of model steps and interfaces. Defining standard model steps also defines standard
interfaces. Not all models need stop or produce output at each interface step (e.g. M4 and M5). Because
of the standard interfaces, combinations of models (e.g. M1 + M2 + M3, M4+M3, M1+M5) are easy.
Also any application that uses one combination (e.g. M1+M2) can be easily switched to use a different
equivalent path (e.g. M4).

Figure 3: Example of the 3 collaborative system options. A) Open Standards. Models start and stop at
defined interfaces and use standard format files, but chaining models together is left up to the user. B)
Minimal Platform. Models are wrapped with a standard core code that also allows for chaining the
models together more easily. C) Full Platform. Models are wrapped in a larger platform code with
enhanced functionality. See text for advantages and disadvantages.

- 14 -

Figure 4: Multiple implementations of a model (“M”) enabled by use of command line version. Model
can be easily incorporated into collaborative platform module, which then enables running locally (alone
or chained with other models), or running remotely by putting on the web as a web service. Model
developer need only develop the one command line version to enable all uses.

Figure 5: Functioning of thin client applications. Thin client relies on models installed on web farm as
web services to do computations, but then interprets results from model output and creates display for
user. Thin client can be either a web page or a local application. Thin client can also be redirected to
point at local machine when web server farm is unreachable. Because of the use of standard interfaces,
any available model can be used for each step (e.g. model 1b instead of 1a or 2b instead of 2a).

- 15 -

Figure 6: Wrapping existing models to make them work in a collaborative system. Existing models can
be wrapped to make them compatible with newly defined standard interfaces.

Narasimhan K. (‘Sim’) Larkin
USDA FS / PNW / AirFire Email: larkin@fs.fed.us
400 N. 34th Street, Suite 201 Phone: 206-732-7849
Seattle, WA 98103

EDUCATION
Ph.D. Climate Diagnostics (School of Oceanography) 2000

 University of Washington, Seattle, Washington

B.A. Physics (w/High Honors) 1991
 University of California, Berkeley, California

HONORS
 National Fire Plan Excellence in Research Award, 2005
 (BlueSky Modeling Consortium)
 USDA Forest Service Merit and Excellence Cash Awards, 2001- (6 total)
 NOAA PMEL Outstanding Scientific Paper Award, 1996
 NDSEG Graduate Research Fellowship, 1993–1996
 NSF Graduate Fellowship, 1993 (declined in favor of NDSEG Fellowship)
 Phi Beta Kappa

PROFESSIONAL EXPERIENCE
2001-present Research Physical Climatologist
 AirFire Team, PNW Research Station
 USDA Forest Service
2006-present Deputy Team Leader, AirFire Team
2004-6 Interim & Acting Team Leader, AirFire Team
2005-present BlueSky Smoke Modeling Project Lead
2005 NATO Advanced Studies Institute, Gallipoli, Italy
2000-2001 Post-doctoral Fellow, JISAO, University of Washington
1997 NATO Advanced Studies Institute, Les Houches, France
1992-2000 Research Assistant, University of Washington
1991-1992 Engineer, Center for Particle Astrophysics, University of California
1987-1991 Undergraduate Research Assistant, Lawrence Berkeley Laboratory

PROFESSIONAL AFFLIATIONS
Sigma Xi, 2007–present
International Association of Wildland Fire (IAWF), 2006–present
International Association of Landscape Ecologists (IALE), 2006–present
American Statistical Association (ASA), 2004-present

 American Geophysical Union (AGU), 1993-present
American Meteorological Society (AMS) 1993-present

PROFESSIONAL SERVICE
Co-chair, 7th Fire and Forest Meteorology Conference (AMS), 2007
Special session co-organizer, Core Fire Science Caucus (US NFP), 2007
Session co-organizer, 2nd Fire Behavior and Fuels Conference (IAWF), 2007
Session chair and assist. co-chair, 6th Fire and Forest Meteorology Conference (AMS), 2006
Session chair and assist. co-chair, 5th Fire and Forest Meteorology Conference (AMS), 2004
AMS Fire and Forest Meteorology Committee, 2003-present
Co-chair, BlueSky Annual Meetings, 2002-present (USFS, 5 meetings)

RECENT SELECT PRESENTATIONS
(136 total / 74 personally presented / 42 invited)

2007 7th Forest and Fire Meteorology Conference, Bar Harbor, Maine (conference co-chair)
2007 2nd Fire Behavior and Fuels Management Conf., San Destin, Florida (session asst. org.)
2007 Canadian Smoke Forecasting Workshop (invited), Edmonton, Alberta
2007 National Air Quality Conferences (invited), Orlando, Florida

SELECT REFEREED PUBLICATIONS
(36 total publications/ 19 refereed)

Larkin, N.K., S.M. O’Neill, R. Solomon, C. Krull, S. Raffuse, M. Rorig, J. Peterson, and S.A.
Ferguson (2007), “The BlueSky smoke modeling framework.” International Journal of Wildland
Fire, (in review)

O’Neill, S., N.K. Larkin, J. Hoadley, G. Mills, J.K. Vaughan, R. Draxler, M. Ruminski, and S.A.
Ferguson (2007) “Real time smoke predictions” IUFRO book chapter (accepted, in press)

Riebau A., Larkin N.K., Pace T., Lahm P., Haddow D., Allen T., Spells C. (2006) “The 2005
BlueSkyRAINS-West demonstration project: final report.” USFS PNW Research Station,
Portland, OR. pp.38.

McKenzie, D., S.M. O’Neill, N.K. Larkin, and R.A. Norheim. (2006). “Integrating models to
predict regional haze from wildland fire.” Ecological Modeling, 199, 278-288.

O’Neill, S., J. Hoadley, S. Ferguson, R. Solomon, J. Peterson, N. Larkin, R. Peterson, R. Wilson, and
D. Mahany (2005). “Applications of the BlueSkyRAINS smoke modeling system.” Journal
of the Air and Waste Management Association, September 2005, 20-23.

Larkin N. K., and D. E. Harrison (2005). “On the definition of El Niño and associated seasonal
average U.S. weather anomalies.” Geophys. Res. Lett., 32, L13705,
doi:10.1029/2005GL022738.

Larkin N. K., D. E. Harrison (2005). “Global seasonal temperature and precipitation anomalies
during El Niño autumn and winter.” Geophys. Res. Lett., 32, L16705,
doi:10.1029/2005GL022860.

Harrison, D.E., and N.K. Larkin. (2002). “Cold events: anti-El Niño?” In Cold Events, ed. M.
Glantz, United Nations Univ. Press., Tokyo, Japan, pp. 237-241.

Larkin, N.K., and D.E. Harrison. (2002). “ENSO Warm (El Niño) and Cold (La Niña) event life
cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications.” J.
Climate, 15, 1118-1140.

Larkin, N.K., and D.E. Harrison. (2001). “Tropical Pacific ENSO cold events, 1946-1995: SST,
SLP and surface wind composite anomaly patterns.” J. Climate, 14, 3904-3931.

Harrison, D.E., and N.K. Larkin. (2001). “Comment on Smith et al. (1999) ‘Comparison of 1997-
98 U.S. temperature and precipitation anomalies to historical ENSO warm phases.’ ” J.
Climate, 14, 1894-1895.

Murphy, P.P., Y. Nojiri, D.E. Harrison and N.K. Larkin. (2001). “Scales of spatial variability for
surface ocean pCO2 in the Gulf of Alaska and Bering Sea: toward a sampling strategy.”
Geophys. Res. Lett., 28 (6), 1047-1050.

Harrison, D.E., and N.K. Larkin. (1998). “Seasonal U.S. temperature and precipitation anomalies
associated with El Niño: Historical results and comparison with 1997-98.” Geophys. Res.
Lett., 25 (21), 3959-3962.

Harrison, D.E., and N.K. Larkin. (1998). “El Niño-Southern Oscillation sea surface temperature
and wind anomalies.” Rev. of Geophys, 36 (3), 353-399.

Harrison, D.E., and N.K. Larkin. (1997). “Darwin sea-level pressure, 1876-1996: Evidence for
climate change?” Geophys. Res. Lett., 24 (14), 1779-1782.

Harrison, D.E., and N.K. Larkin. (1996). “The COADS sea level pressure signal: A near-global El
Niño composite and time series view, 1946-1993.” J. Climate, 9 (12), 3025-3055.

