
 
 

INTERAGENCY FUELS TREATMENT 
DECISION SUPPORT SYSTEM SOFTWARE  

DESIGN SPECIFICATIONS 
 
 
 

Software Specifications 
STI-909029.03-3664-SS 

 
By: 

Neil J.M. Wheeler 
Judd E. Reed 

Kevin D. Unger 
Sean M. Raffuse 

Steven A. Ludewig 
Tami H. Funk 
Eric A. Gray 

 
Sonoma Technology, Inc. 

1455 N. McDowell Blvd., Suite D 
Petaluma, CA 94954-6503 

 
 

Prepared for: 
The Joint Fire Science Program 
3833 South Development Avenue 

Boise, ID 83705 
 
 

August 18, 2009 



 
 



 
 

 iii

ACKNOWLEDGMENTS 

Many individuals have contributed to this software design specifications document for 
the Interagency Fuels Treatment Decision Support System (IFT-DSS).  We are greatly 
appreciative of the support and guidance provided by John Cissel, the Joint Fire Science Program 
(JFSP) program manager.  Erik Christiansen, Chair of the National Interagency Fuels 
Coordinating Group (NIFCG), provided key help and support for analyzing the fuels treatment 
process that specialists from all agencies struggle with.  The JFSP Fuels Treatment Working 
Group (FTWG)—Michael Beasely, Dennis Dupuis, Mark Finney, Glen Gibson, Randi Jandt, 
David Peterson, Tessa Nicolet, and Brad Reed—has guided our work and represented the first 
line of critique and innovative ideas for the project.  The JFSP Software Tools and Systems 
Study Advisory Committee—Pat Andrews, Nate Benson, Mike Hilbruner, Mike Hutt, David 
Peterson, Carol Saras, Paul Schlobohm, Shari Shetler, and Tim Swedberg—has kept the study 
headed in the right direction and made sure that all of the various components of a successful 
solution were considered. 

We would like to specifically acknowledge the fuels treatment specialists who have 
agreed to participate in this effort to serve as the IFT-DSS proof of concept (POC) Test User 
Group—Randi Jandt, Brad Reed, Tessa Nicolet, Sean McEldery, Jon Wallace, Mack McFarland, 
Brenda Wilmore, Jim Roessler, Gwen Lipp, Perry Grissom, Eric Miller, Karen Folger, Nikia 
Hernandez, Gary Curcio—who have provided, and will continue to provide, valuable feedback 
regarding the functionality and usability of the IFT-DSS.  We also thank the broader group of 49 
field fuels treatment specialists who helped develop and refine the fuels treatment decision 
support process. 

We would like to acknowledge our appreciation of the fire and fuels science and software 
development community—the Fire and Environmental Research Applications (FERA) team of 
Eric Twombly, Mark Finney, Joe Scott, Alan Ager, Nick Crookston—for their cooperation and 
feedback related to integrating data and software applications that will be a part of the IFT-DSS.  
We would also like to acknowledge the managers of the Wildland Fire Decision Support System 
(WFDSS)—Tom Zimmerman, Rob Seli, and their development team—and the BlueSky 
Framework—Sim Larkin—for their willingness to work collaboratively to develop software 
systems that can communicate with one another to create efficiencies in the fire and fuels 
domain. 

We would also like to thank the Information Technology (IT) specialists who helped 
ensure that we have considered agency IT requirements—John Gebhardt, John Noneman, Laura 
Hill, and Joe Frost.  All of these groups constitute the large group of stakeholders whose jobs 
will be positively affected by the results of this project.  It will take long-term attention and 
energy from these groups of stakeholders and others, yet to be engaged, to create an effective 
community of interest that will ensure that the IFT-DSS helps all of us do our jobs better. 

Finally, we would like to thank the other members of Sonoma Technology’s (STI) IFT-
DSS design and development team who contributed to the IFT-DSS design, including Liron 
Yahdav, Alan Healy, Jason Amador, and Stacy Drury. 
 



 
 

 iv

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VERSION CONTROL 

Draft Version 1 July 29, 2009 
Draft Version 2 August 18, 2009 
  

 

 



 
 

 v

 
 

TABLE OF CONTENTS 
 

Section Page 

ACKNOWLEDGMENTS ............................................................................................................. iii 
LIST OF FIGURES ...................................................................................................................... vii 
LIST OF TABLES......................................................................................................................... ix 
GLOSSARY .................................................................................................................................. xi 
EXECUTIVE SUMMARY .......................................................................................................ES-1 

ES.1  Introduction.............................................................................................................ES-1 
ES.2  The Fuels Treatment Planning Process...................................................................ES-1 
ES.3 IFT-DSS Software Architecture .............................................................................ES-2 
ES.4  IFT-DSS POC Functionality and Scientific Models ..............................................ES-4 
ES.5  IFT-DSS User Experience ......................................................................................ES-5 
ES.6 IFT-DSS Software Design......................................................................................ES-6 

1. INTRODUCTION.............................................................................................................. 1-1 
1.1 Purpose ..................................................................................................................... 1-2 
1.2 Document Organization............................................................................................ 1-3 
1.3 IFT-DSS Naming Convention .................................................................................. 1-3 
1.4 References to Other Relevant Documents................................................................ 1-4 

2. SYSTEM OVERVIEW...................................................................................................... 2-1 
2.1 Service Oriented Architecture .................................................................................. 2-1 
2.2 Rationale for a Service Oriented Architecture Approach......................................... 2-2 
2.3 IFT-DSS Users and Stakeholders ............................................................................. 2-3 
2.4 Overview of the Fuels Treatment Decision Support Process ................................... 2-4 
2.5 IFT-DSS POC Requirements.................................................................................... 2-6 
2.6 Overview of the IFT-DSS Architecture.................................................................... 2-7 

2.6.1 Architectural Components............................................................................ 2-7 
2.6.2 Key Architectural Features and Functions ................................................... 2-8 

2.7 IFT-DSS POC Functionality..................................................................................... 2-9 
2.7.1 Data and Model Implementation.................................................................. 2-9 
2.7.2 IFT-DSS POC Work Flow Scenarios......................................................... 2-10 
2.7.3 IFT-DSS POC Implementation .................................................................. 2-15 

2.8 IFT-DSS POC Model Integration........................................................................... 2-16 
2.9 IFT-DSS Connections to Other Systems ................................................................ 2-17 

3. THE IFT-DSS POC USER EXPERIENCE ....................................................................... 3-1 
3.1 Logging into the IFT-DSS........................................................................................ 3-1 
3.2 Phase I – Project Setup and Planning ....................................................................... 3-3 
3.3 Phase II – Software Model Execution and Iterative Analysis .................................. 3-5 
3.4 Phase III – Project Finalization, Documentation, and Archive ................................ 3-9 



 
 

 vi

 
Section Page 

4. TECHNICAL SOFTWARE DESIGN ............................................................................... 4-1 
4.1 Components .............................................................................................................. 4-3 

4.1.1 Models .......................................................................................................... 4-4 
4.1.2 Model Adaptors ............................................................................................ 4-6 
4.1.3 Geodatabase................................................................................................ 4-13 
4.1.4 Data Sequencer........................................................................................... 4-14 
4.1.5 Executive .................................................................................................... 4-16 
4.1.6 Scenario Database ...................................................................................... 4-19 
4.1.7 Navigator .................................................................................................... 4-23 
4.1.8 Project and Planning Database ................................................................... 4-24 
4.1.9 Planner Web Application ........................................................................... 4-25 

4.2 Interfaces................................................................................................................. 4-26 
4.2.1 Model Data Exchange Interface ................................................................. 4-27 
4.2.2 Model Control Interface ............................................................................. 4-28 
4.2.3 Sequencer Control and Monitoring Interface ............................................. 4-29 
4.2.4 Executive Scenario Polling and Feedback Interface .................................. 4-31 
4.2.5 Executive Launching and Progress Reporting Interface ............................ 4-31 
4.2.6 Map and Data Presentation Interface ......................................................... 4-32 
4.2.7 Web Page Generator and Database Interface ............................................. 4-33 

4.3 Behaviors and Interactions ..................................................................................... 4-33 
4.3.1 Project Workflow ....................................................................................... 4-34 
4.3.2 Executive Scenario Compilation ................................................................ 4-34 
4.3.3 Executive Orchestration of Model and Geodatabase Interaction............... 4-35 
4.3.4 User Interaction with the Graphical User Interface and Database ............. 4-36 
4.3.5 User Interaction with the Web Map Service and the Geodatabase ............ 4-38 

5. TECHNOLOGIES ............................................................................................................. 5-1 
5.1 Models and Model Adaptors .................................................................................... 5-1 
5.2 Geodatabase.............................................................................................................. 5-2 
5.3 Data Sequencer and Executive ................................................................................. 5-2 
5.4 Planning and Scenario Databases ............................................................................. 5-3 
5.5 Navigator and Planner .............................................................................................. 5-3 

6. REFERENCES................................................................................................................... 6-1 

 
 



 
 

 vii

LIST OF FIGURES 
 

Figure Page 

ES-1 Illustration of the five key architecture components of the IFT-DSS............................ES-3 

ES-2 Data, transformations, and scientific models to be implemented in the IFT-DSS 
POC system....................................................................................................................ES-4 

ES-3 Mock-up of the IFT-DSS POC project setup screen. ....................................................ES-5 

ES-4 Overall structure of the IFT-DSS depicting the system’s major components and 
software interfaces .........................................................................................................ES-7 

1-1. Naming convention for the IFT-DSS............................................................................... 1-4 

2-1.  Work flow diagram illustrating how the fuels treatment planning work flow scenarios 
fit together from a process perspective. ........................................................................... 2-5 

2-2.  Illustration of the five key architecture components of the IFT-DSS. ................................ 2-8 

2-3.  Data, transformations, and models to be implemented in the IFT-DSS POC system....... 2-10 

2-4.  Process diagram for the data acquisition and preparation work flow scenario to be 
implemented in the IFT-DSS POC. ............................................................................... 2-11 

2-5.  Process diagram for the strategic planning workflow scenario as it will be 
implemented in the IFT-DSS POC. ............................................................................... 2-12 

2-6.  Process diagram for the prescribed burn planning work flow scenario using the 
FlamMap pathway in the IFT-DSS POC. ...................................................................... 2-13 

2-7.  Process diagram for the prescribed burn planning work flow scenario using the FCCS 
pathway in the IFT-DSS POC........................................................................................ 2-14 

2-8.  Illustration of the pathways and implementation order for the IFT-DSS POC. ................ 2-15 

3-1.  Mock-up of the IFT-DSS user login screen......................................................................... 3-1 

3-2.  Screen shot of the IFT-DSS POC user home page.............................................................. 3-2 

3-3.  Screen shot of the “My Profile” screen where users manage their profile information...... 3-2 

3-4.  Mock-up of the user options available on a user’s home page............................................ 3-3 

3-5.  Mock-up of the IFT-DSS POC project setup screen. .......................................................... 3-4 

3-6.  Mock-up of an example modeling scenario graph in the IFT-DSS POC............................ 3-6 



 
 

 viii

 
Figure Page 

3-7.  Example results of fireline intensity from FlamMap........................................................... 3-7 

3-8.  Example page showing input options to model fire behavior for a range of weather 
conditions using FlamMap............................................................................................... 3-8 

3-9.  Example page for exploring fire effects modeling results for a range of weather 
conditions using Consume ............................................................................................... 3-9 

3-10.  Example Manage Projects screen in the IFT-DSS POC with two project analyses 
displayed. ....................................................................................................................... 3-10 

4-1.  Overall structure of the IFT-DSS depicting the system’s major components and 
software interfaces. .......................................................................................................... 4-2 

4-2.  Illustration of the three model hosting methods by which models can be integrated 
into the IFT-DSS and function as services. ..................................................................... 4-7 

4-3.  UML diagram of the model communication infrastructure................................................. 4-9 

4-4.  Conceptual ERD for the Scenario Database...................................................................... 4-20 

4-5.  Conceptual ERD for subset of the Scenario Database to facilitate efficient model 
execution. ....................................................................................................................... 4-21 

4-6.  Conceptual ERD of user interface HTML templates ........................................................ 4-22 

4-7.  Subcomponents of the Navigator. ..................................................................................... 4-23 

4-8.  Conceptual ERD for Project and Planning Database. ....................................................... 4-25 

4-9.  Overview of run execution. ............................................................................................... 4-34 

4-10.  Swim lane diagram of the Navigator, Executive, and Scenario DB interaction. ............ 4-35 

4-11.  Swim lane diagram of Executive, Data Sequencer and GDB, and models interaction... 4-36 

4-12.  Swim lane diagram of the user, Navigator (GUI), page creator, and scenario 
database interaction........................................................................................................ 4-37 

4-13.  Swim lane diagram of the user, WMS, and GDB interaction. ........................................ 4-38 

 



 
 

 ix

LIST OF TABLES 
 

Table Page 

1-1.  IFT-DSS proposed naming convention during development. ............................................. 1-4 

2-1.  IFT-DSS requirements and how they will be realized in the POC...................................... 2-6 

4-1.  Representation of an array of grid cells containing elevation values. ................................. 4-5 

4-2.  Pseudocode for an example slope/aspect model.................................................................. 4-5 

4-3.  Pseudocode for key member functions to the output stream class. ................................... 4-10 

4-4.  Pseudocode of the readObject member function of the input stream class. ...................... 4-11 

4-5.  Pseudocode of the model hosting program........................................................................ 4-12 

4-6.  Brief pseudocode for the Executive program. ................................................................... 4-16 

4-7.  Pseudocode for compiler component of the Executive. .................................................... 4-18 

4-8.  Messages between the Executive and Model Adaptors..................................................... 4-29 

4-9.  Messages between the Executive and Data Sequencer. .................................................... 4-30 

 



 
 

 x



 
 

 xi

GLOSSARY 

TERM DESCRIPTION 
API Application programming interface 
Area of interest (AOI) For IFT-DSS, a scale-independent unit of area defined by a user.  

Within an area of interest, project areas and vegetation units can be 
defined for analysis.  There is no minimum size unit but a 
maximum unit will be limited to one million acres (approximately 
400,000 hectares) 

BlueSky Framework An SOA system to facilitate predictions of smoke emissions and air 
quality impacts from fires 

Consume A fire effects prediction model.  It uses fuel loadings, fuel moisture, 
and weather variables to predict fuel consumption, particulate 
emissions, and heat energy released under prescribed fire and 
wildfire conditions.    

DAG Directed Acyclic Graph (used to represent scenarios in the IFT-
DSS) 

.dll  dynamic link library 
ERD Entity Relationship Diagram 
Executive The component that compiles scenario segments and directs the 

execution of models 
FCCS Fuel Characteristic Classification System 
FOFEM First Order Fire Effects Model; a set of fire effects prediction 

models.  FOFEM uses fuels and vegetation information to provide 
estimates of fuel consumption, tree mortality, soil heating, and 
particulate emissions.  

FRAMES Fire Research and Management Exchange System 
FSVeg A USDA Forest Service database that contains point and plot 

vegetation data from field surveys such as Forest Inventory 
Assessment (FIA) exams, stand exams, forest inventories, and 
regeneration surveys.  It includes data for trees, surface cover, 
understory vegetation, and downed woody material.  

FVS The USDA Forest Service’s Forest Vegetation Simulator, a 
framework for modeling forest growth 

FlamMap A fire behavior mapping and analysis program that computes 
potential fire behavior characteristics (spread rate, flame length, 
fireline intensity, etc.) over an entire landscape for constant weather 
and fuel moisture conditions. 

Fuels treatment For the IFT-DSS, any mechanical, silvicultural, or burning activity 
whose main objective is to reduce fuel loadings or change fuel 
characteristics to lessen fire behavior or burn severity. 

GDB Geodatabase, a special form of geographic information system that 
can manage different types of geographic data 

GIS Geographic information system 
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TERM DESCRIPTION 
GUI Graphical user interface 
IFT-DSS Interagency Fuels Treatment Decision Support System 
IT  Information technology 
JFSP Joint Fire Science Program 
LANDFIRE Landscape Fire and Resource Management Planning Tools Project, 

a mapping project and database of vegetation, fire, and fuel 
characteristics 

.lcp Landscape File format 
NEPA National Environmental Policy Act 
NEXUS Crown fire hazard analysis software that links separate models of 

surface and crown fire behavior to compute indices of relative 
crown fire potential. 

NIFCG National Interagency Fuels Coordinating Group 
NWCG National Wildfire Coordinating Group 
Navigator The component that allows users to operate the system from a web 

browser 
POC Proof of concept  
Project and Planning 
Database 

A database for storing administrative data about fuels treatment 
projects 

Pseudocode An outline of step-by-step computer programming instructions that 
is not written in a particular programming language 

RPC Remote procedure call 
SQL Structured Query Language, used in managing databases 
STS Study Software Tools and Systems Study 
Scenario Database The component that stores representations of the scenarios that are 

run 
Service Oriented 
Architecture (SOA) 

An underlying structure that allows loosely connected components 
of a computer system to communicate, thus allowing services to be 
added or changed without creating a completely new structure 

Software interface The mechanism by which software components interact and 
communicate with one another. 

Spatial Data Sequencer The component that relays data between the Geodatabase and 
models 

UML Unified Modeling Language 
WFDSS Wildland Fire Decision Support System 
WMS Web Map Service, a protocol for (?) 
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EXECUTIVE SUMMARY 

ES.1 INTRODUCTION 

In May 2009, the Joint Fire Science Program (JFSP) initiated Phase IIIa of the Software 
Tools and Systems (STS) Study.  Phase IIIa of the STS Study involves the development of a 
proof of concept (POC) system for the Interagency Fuels Treatment Decision Support System 
(IFT-DSS).  The IFT-DSS POC will provide a user friendly software system to manage a subset 
of the most commonly used software tools and data to perform fuels planning scenarios.  A key 
goal of the IFT-DSS POC is to demonstrate that a well-designed, extendable, service oriented 
architecture software (SOA) framework can help organize and manage the many existing data 
sets, software models, and tools in the fire and fuels domain and can help foster collaboration 
within a community of stakeholders.  Ultimately, it is the goal of the IFT-DSS program to 
change the software development and deployment process within the fire and fuels domain to 
create efficiencies and leverage services among several large distributed SOA systems (e.g., the 
BlueSky Framework and the Wildland Fire Decision Support System, or WFDSS). 

The IFT-DSS POC will explore the initial connections to two other SOA systems in the 
fire and fuels community:  the BlueSky Framework and WFDSS.  The BlueSky Framework has 
recently been expanded to provide access to its processes through web services.  IFT-DSS will 
leverage BlueSky services where possible.  The IFT-DSS development team will also work 
closely with the WFDSS development team to share technology.  There is an overlap in 
functionality between the two systems, and IFT-DSS will reuse the work done by the WFDSS 
team to the maximum practical extent.  In turn, as the IFT-DSS is developed, it will make its 
services available to the BlueSky Framework and WFDSS. 

ES.2 THE FUELS TREATMENT PLANNING PROCESS 

During Phase II and early in Phase IIIa, many efforts have been made to understand the 
decision support needs and the workflow processes involved in fuels treatment planning and 
management.  As a result of these efforts, the following six workflow scenarios have been 
identified:   

 

 •Data acquisition and preparation involves collecting and preparing the vegetation data 
needed for input into fire behavior and fire effects models. 

 •Strategic planning involves identification of high fire hazard areas within an area of 
interest.  The focus is to identify where further treatment analysis may be warranted on 
the basis of potential fire hazard. 

 •Spatially explicit fuels treatment assignment involves (1) simulating fuels treatment 
placement in areas of high fire hazard within an area of interest; and (2) simulating post-
treatment influences on fire behavior and fire effects potentials.  The spatially explicit 
fuels treatment assignment extends the strategic planning analysis to applying treatments 
on the landscape.   
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 •Fuels treatment effectiveness over time involves the evaluation of the temporal 
durability of fuels treatments; that is, how long, in years to decades, a treatment will 
continue to affect potential fire behavior and fire effects within an area of interest.  This 
workflow scenario naturally follows the strategic analysis and fuels treatment assignment 
workflow scenario. 

 •Prescribed burn planning involves preparing the information needed to plan, 
document, and conduct a proposed prescribed fire.   

 •Risk assessment involves conducting a probabilistic risk assessment for fuels treatment 
planning. 

ES.3 IFT-DSS SOFTWARE ARCHITECTURE 

The findings of the work performed during Phase I of the STS Study indicated that an 
SOA approach would best serve the fuels treatment community.  Several key strategic-level 
requirements warrant a web-based, distributed SOA approach:  

 The need for a system that can be easily accessed and used by fuels treatment specialists 
from a variety of different agencies.  

 The need for a system that can organize, integrate, and manage existing and future fire 
and fuels software applications.  

 The need for a system that will support distributed collaboration and allow fuels 
treatment planners to perform ad hoc analyses customized for a particular location and/or 
situation.  

The core of the IFT-DSS software architecture consists of five elements:  (1) a multi-layered 
graphical user interface, (2) a scenario database, (3) an executive application, (4) data and 
software services, and (5) a geospatial database.  Figure ES-1 illustrates the five key 
components of the architecture and their relative architectural arrangement.  Each component 
contains interconnected sub-components, or layers, that perform specific functions within the 
system.  These components and their behavior are described in Sections 3 and 4 of this 
document. 
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(User Interaction)
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Executive Application
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Geospatial Database
(Data Storage and Access Service)

 

Figure ES-1.  Illustration of the five key architecture components of the IFT-DSS. 

The IFT-DSS architecture was designed to support the following key features:  

 The IFT-DSS should make fuels treatment planning easier by 

– allowing users to acquire, create, and transform input data easily; 

– providing data choices: treelist, LANDFIRE grids, user supplied; 

– allowing users to view and edit spatial and tabular data (inputs and outputs); 

– organizing fuels treatment planning analysis steps and software tools; and 

– recognizing user error and explaining alternate action. 

 The IFT-DSS should make fuels treatment planning more scientifically robust by 

– providing guidance regarding data and model choices based on the scale and type 
of analysis being performed; 

– allowing users to publish and share analysis methods and algorithms; 

– providing a mechanism to perform sensitivity and iterative analyses ; 
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– providing a mechanism to easily incorporate new models and tools as they are 
developed; and 

– providing quality control, documentation, and audit-trail information to meet 
regulatory reporting requirements. 

ES.4 IFT-DSS POC FUNCTIONALITY AND SCIENTIFIC MODELS 

The IFT-DSS POC will implement three of the six workflow scenarios described in 
Section ES.2 above: 1) data acquisition and preparation, 2) strategic planning, and 3) prescribed 
burn planning.  Figure ES-2 lists the data, transformations, and scientific models that will be 
implemented in the IFT-DSS POC system. 
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Figure ES-2.  Data, transformations, and scientific models to be implemented in the IFT-
DSS POC system. 

ES.5 IFT-DSS USER EXPERIENCE 

The IFT-DSS POC graphical user interface (GUI) will be web-based and will function 
within a standard web browser (for example, Internet Explorer or Firefox).  From a user 
perspective, a project analysis will involve three phases: (1) project setup and planning; (2) 
software model execution and iterative analysis; and (3) project finalization, documentation, and 
archive.  The IFT-DSS GUI will be designed based on early feedback from end users to ensure 
that it is straightforward and user friendly.  Figure ES-3 shows an example mock-up of the IFT-
DSS GUI. 



 
 

 ES-5

 

In this example, the user
has selected to perform 
strategic planning using
LANDFIRE data with
FlamMap and Consume
to model fire behavior and
effects.

(1)

(2)

(3)

(4)

In this example, the user
has selected to perform 
strategic planning using
LANDFIRE data with
FlamMap and Consume
to model fire behavior and
effects.

In this example, the user
has selected to perform 
strategic planning using
LANDFIRE data with
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(1)

(2)

(3)

(4)

 

Figure ES-3.  Mock-up of the IFT-DSS POC project setup screen.  A user creating 
a new project analysis would go through four general steps: 1) provide a project 
name, 2) select an analysis objective, 3) define an area of interest; and 4) select a 
modeling scenario pathway.   

ES.6 IFT-DSS SOFTWARE DESIGN 

The IFT-DSS will serve as a software framework to integrate vegetation data, vegetation 
simulators, fire behavior and effects models, and risk analysis tools.  It will support the reuse of 
IFT-DSS applications and services over the Internet, and it will be a flexible, modern, 
web-friendly system.  In designing the IFT-DSS, both current and future needs of the user 
communities have been considered and therefore the IFT-DSS can be implemented as a general 
framework for scientific modeling and analysis.  The IFT-DSS is designed in a manner that is 
generic and almost completely independent of programming language, hardware, and operating 
system implementation decisions; that is, the design can be realized in a variety of ways using 
any one of many hardware and operating system configurations.  It is important to realize that 
this design was constructed in a way so that system components can be developed in different 
languages and use different operating foundations while still conforming to this design. 

Figure ES-4 illustrates the overall system design including system components and 
interfaces, and their relationships.  The IFT-DSS is described in terms of nine components and 
seven interfaces.  The nine components are: 
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A. Models – The scientific and computational components of the system; all other 
components support the model operations 

B. Model Adaptors – Enable integration of different models into the system 

C. Geodatabase (GDB) – Stores the actual data inputted to and outputted from models 

D. Data Sequencer – Relays data between the GDB and models 

E. Executive – Directs the execution of the models 

F. Scenario Database – Stores representations of how different “runs” of models are 
orchestrated 

G. Navigator Web Application – Visualizes spatial data, allows users to edit data values 
for model inputs, and allows users to execute runs through scenarios or parts of scenarios, 
all from a web browser 

H. Project and Planning Database – Stores administrative data about fuels treatment 
projects 

I. Planner Web Application – Enables users to manage fuels treatment projects from a 
web browser 

The seven interfaces are: 

1. Model Data Exchange – Connections between machines running models to relay model 
inputs and outputs 

2. Model Control – Connections between the Executive and model adaptors to prepare the 
model data exchange connections 

3. Sequencer Control and Monitoring – Interaction between the Data Sequencer and 
Executive to manage scenario execution 

4. Executive Scenario Polling and Feedback – Executive queries of the Scenario Database 
for required data, and feedback about model and machine execution performance 

5. Executive Launching and Progress Reporting – Web application signaling of the 
Executive to compile and run a scenario segment and the Executive reporting progress 
back to the web application 

6. Map and Data Presentation Interface  – Communication between the GDB and the 
web application components 

7. Web Page Generator and Database Interface – Web application queries of the 
Scenario Database to produce the web pages displayed to the user for model inputs and 
outputs 
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Figure ES-4.  Overall structure of the IFT-DSS depicting the system’s major 
components (with lettered indicators) and software interfaces (numbered).  
Features that will not be implemented in the IFT-DSS POC are represented with 
dashed borders 

This design supports not only the immediate needs of the fuels treatment planning 
community but also supports two key requirements: 1) the ability for fuels treatment planners to 
collaborate and share analysis methods, and 2) the ability for the science and model development 
community to dynamically publish new data and applications to the system.  In addition, this 
design is flexible and extensible to support future planning needs, new sources of data, and new 
applications as they evolve.. 
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1. INTRODUCTION 

In May 2009, the Joint Fire Science Program (JFSP) initiated Phase IIIa of the Software 
Tools and Systems (STS) Study.  Phase IIIa of the STS Study involves the development of a 
proof of concept (POC) system for the Interagency Fuels Treatment Decision Support System 
(IFT-DSS).  The IFT-DSS POC will provide a user friendly software system to manage a subset 
of the most commonly used software tools and data to perform fuels planning scenarios with the 
goal of demonstrating the usefulness and feasibility of the IFT-DSS.  The development period 
for the IFT-DSS POC (Phase IIIa of the STS Study) will span approximately one year beginning 
in May 2009.  This document contains the software design specifications for the IFT-DSS POC 
system. 

The increasing operational complexity and urgency in fire and fuels management, 
coupled with a proliferation in the number of decision support tools available, have driven the 
need for a transformative solution.  A distributed Service Oriented Architecture (SOA) approach 
that is readily accessible to users across different agencies has the potential to positively 
transform the development and deployment of data and software tools for fire and fuels 
management by organizing and coordinating the interaction of independently operating data 
services and software tools.1  When developed with input and acceptance from all stakeholder 
communities, SOA systems can improve the exchange of information and promote collaboration 
among stakeholder communities.  These systems can streamline the decision support process, 
facilitate improvements and advancements in fire and fuels science, and reduce the barriers that 
hinder the adoption of sophisticated risk management science concepts and practices. 

Several SOA systems currently exist in the fuels treatment planning domain, and they are 
“distributed” and service-oriented to varying degrees.  While these existing systems all contain 
useful science and link disparate software applications, some of the systems are inaccessible or 
require expert knowledge, and none of them individually supports the full range of fuels 
treatment planning activities.  In addition, these systems have not been widely adopted; thus, 
their user groups are relatively small, and they have not been deployed in a way that facilitates 
interagency collaboration. 

The IFT-DSS development effort is intended to demonstrate that a well-designed SOA 
approach, combined with community development efforts, can improve the decision support 
process and underlying science in the fire and fuels domain.  The overall goal of the IFT-DSS is 
to develop an extendable software framework for organizing and managing the many existing 
data sets, software models, and tools available for fuels treatment planning and analysis and to 
foster collaboration within a community of stakeholders.  Ultimately, it is the goal of the 
IFT-DSS program to change the software development and deployment process within the fire 
and fuels domain to create efficiencies and to leverage services among several large distributed 
SOA systems (e.g., the BlueSky Framework and the Wildland Fire Decision Support System). 

                                                 
1 Refer to the Carnegie Mellon Software Engineering Institute (SEI) final report prepared for the JFSP for a 
definition and discussion about SOA, 
<http://frames.nbii.gov/documents/jfsp/sts_study/palmquist_sei_report_2008.pdf> 
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The IFT-DSS software architecture was designed to provide the following benefits to its 
various stakeholder communities: 

 Integration, guidance, and collaboration regarding the use of existing data, software 
models, and tools for fuels treatment analysis and planning. 

 Increased productivity and efficiency in the fuels treatment planning process through a 
system that can greatly reduce the time associated with preparing and manipulating data 
and software applications. 

 A framework that facilitates peer review and model validation for scientific algorithms, 
applications, and vegetation data, along with a more efficient review, critique, and 
feedback mechanism to improve the scientific work flow and decision support process. 

 A central framework that meets the needs of users, scientists and software developers, IT 
security specialists, and managers equally well, organizing a myriad of software systems 
in a functionally effective, user-friendly manner while allowing IT administrators to 
provide appropriate security and access. 

 Another vehicle to enhance interagency functionality and collaboration and to serve as a 
proving ground for identifying and testing acceptable governance issues that best support 
interagency operations. 

To achieve these goals, an SOA approach was taken in designing the IFT-DSS 
architecture.  SOA facilitates the integration of disparate software systems by separating 
functions into distinct units, or services that can be made accessible across a computer network 
(distributed) so that users can combine and reuse individual services as needed.  A key 
characteristic of a distributed SOA is the ability of users to have choices and control over the 
data and software applications that are applied to address a specific situation.2 

In the coming months, Sonoma Technology, Inc. (STI) will develop a guidance document 
that will include information about how new software applications and services can be made 
accessible to the IFT-DSS, how other SOA systems in the fire and fuels community can share 
services with the IFT-DSS and vice versa, and how the system can be maintained at a future host 
agency. 

1.1 PURPOSE 

This document is intended to serve two purposes:  (1) to provide background and an 
overview of the IFT-DSS POC system from a user perspective, and (2) to provide technical 
design specifications and a plan for the software implementation of the POC system through 
May 2010.  Sections 1, 2, and 3 of this document are intended for the end user of the IFT-DSS, 
with Sections 1 and 2 providing an introduction to and background of the STS Study and the 
purpose and functionality of the IFT-DSS, and Section 3 containing a discussion of the graphical 
user interface (GUI) for the POC system.  Sections 4 and 5 are primarily for the use of the 
IFT-DSS software development team and contain the technical design specifications for the IFT-
DSS POC.   

                                                 
2 Palmquist, 2008 (pages 17-18), <http://frames.nbii.gov/documents/jfsp/sts_study/palmquist_sei_report_2008.pdf>. 
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There is no standard approach or content requirement for software design specification 
documents; however, in general, a software design specification should provide a technical 
implementation plan for the development team (and new team members) as well as objective 
evidence that the team will develop a system that meets the system requirements.  As such, this 
software design specification provides enough design detail to serve as a guide but does not 
include so much detail as to hinder a flexible, or agile, development process. 

This document provides sufficient detail to ultimately serve as the testing and quality 
assurance (QA) guidance document used by the IFT-DSS testing and QA team to ensure that the 
POC system meets the functions and specifications contained herein.  At the same time, this 
document will be updated throughout the IFT-DSS POC development process to reflect design 
changes that may occur.  It will be considered a living document and will eventually serve as the 
final technical documentation for the POC system. 

1.2 DOCUMENT ORGANIZATION 

This document is organized into six main sections. 

 Section 1 – Introduction: Provides background on the IFT-DSS and the purpose of this 
document. 

 Section 2 – System Overview: Provides an overview on the user community, anticipated 
work flows, and the system architecture. 

 Section 3 – The IFT-DSS POC User Experience: Provides examples and a discussion 
of what the IFT-DSS POC might look like to users of the system. 

 Section 4 – Technical Software Design: Provides a high-level description of the 
IFT-DSS design. 

 Section 5 – Technologies: Provides a discussion of technologies that are expected to be 
used in the initial development of the POC. 

 Section 6 – References: Provides a list of references cited in the document. 

In addition to these sections, this document includes an executive summary and a 
glossary.  Because this document, and especially Section 4, contains many technical terms, the 
reader may find the glossary particularly helpful.  The glossary is located near the beginning of 
this document just before the executive summary. 

1.3 IFT-DSS NAMING CONVENTION 

There are likely to be several versions of the IFT-DSS as development progresses.  
Figure 1-1 illustrates and describes the naming convention for the IFT-DSS. 
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IFT-DSS vX.Y.20xx

System name

Version number
for upgrades

Version number for
new features release

Year of
major release

IFT-DSS vX.Y.20xx

System name

Version number
for upgrades

Version number for
new features release

Year of
major release  

Figure 1-1.  Naming convention for the IFT-DSS. 

Table 1-1 defines the tentative IFT-DSS naming convention proposed for the next three 
years of development.  Note that there may be interim versions of the IFT-DSS that contain 
upgrades to the versions indicated in Table 1-1. 

Table 1-1.  IFT-DSS proposed naming convention during development. 

IFT-DSS Version Description 

IFT-DSS v1.0.2010 The POC system described in this document 
that will be released in May 2010. 

IFT-DSS v2.0.2011 Version 2 of the system to be released in May 
2011. 

IFT-DSS v3.0.2012 Version 3 of the system to be released in May 
2012 

1.4 REFERENCES TO OTHER RELEVANT DOCUMENTS 

Several documents have been produced throughout the STS Study that are relevant to this 
document.  All STS Study documentation can be accessed through the Fire Research and 
Management Exchange System (FRAMES) website.  The following documents are of particular 
relevance to this document: 

 Working Summary of the SEI’s Engagement with the Joint Fire Science Program 
(Palmquist, 2008).  

 The Interagency Fuels Treatment Decision Support System Software Architecture (Funk 
et al., 2009),  

 Refined Work Flow Scenarios for the Interagency Fuels Treatment Decision Support 
System (Drury et al., 2009). 
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2. SYSTEM OVERVIEW 

Any number of architectural approaches could have been proposed for the IFT-DSS; 
however, there are key requirements that the IFT-DSS must meet that warrant a web-based, 
distributed SOA approach: 

 The need for a system that can be easily accessed and used by fuels treatment specialists 
from a variety of different agencies.   

 The need for a system that can organize, integrate, and manage existing and future fire 
and fuels software applications.   

 The need for a system that will support distributed collaboration and allow fuels 
treatment planners to perform analyses customized for a particular location and/or 
situation.   

  This section provides a strategic-level overview of the fuels treatment decision support 
process and the IFT-DSS architecture, including the rationale for the design approach and a 
discussion of the key components of the system.  A complete list of system requirements for the 
IFT-DSS was developed as part of the architecture design process (Phase II of the STS Study) 
and can be found in the document entitled The Interagency Fuels Treatment Decision Support 
System Software Architecture (Funk et al., 2009), 

2.1 SERVICE ORIENTED ARCHITECTURE 

The term SOA is not an alias for a particular system; rather, it describes a particular way 
in which a system is constructed.  For our purpose, SOA is defined as a generic software 
architecture framework designed to support a collection of services (databases and software 
applications) with well-defined software interfaces.3  SOA facilitates the integration of new and 
legacy software applications to streamline work processes.  This architectural approach can also 
support inter-operability with other decision support systems in the fire and fuels domain such as 
the BlueSky Framework and the Wildland Fire Decision Support System (WFDSS).  A 
“distributed” SOA is a system whose components are (or can be) distributed across a computer 
network; that is, the services within the system can reside in geographically different locations 
and can be accessed across a network.  A web-based, distributed SOA is a system that is 
accessible to users and controlled through a standard web browser (e.g., Internet Explorer, 
Firefox, etc.) interface. 

                                                 
3 A software interface is the programmatic mechanism that allows components (software applications) to 
communicate with one another so that data and services can be accessible and interoperable within an SOA 
framework.   
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2.2 RATIONALE FOR A SERVICE ORIENTED ARCHITECTURE APPROACH 

The findings of the work performed during Phase I of the STS Study indicated that an 
SOA approach would best serve the fuels treatment community.  Several key strategic-level 
requirements warrant a web-based, distributed SOA approach:  

 The need for a system that can be easily accessed and used by fuels treatment 
specialists from a variety of different agencies.  Government and state agencies often 
have rules and regulations regarding installation of new software on government 
computers and workstations.  These regulations make it difficult to install software 
applications directly onto agency desktop computers.  Therefore, to make the IFT-DSS 
accessible across agencies, the system must be able to run on a standard desktop (or 
laptop) computer with an Internet connection—eliminating the need for users to install 
new software on their local computer.  This feature requires that the system be hosted on 
an accessible server and developed to function within the most commonly used web 
browsers (e.g., Internet Explorer, Firefox). 

 The need for a system that can organize, integrate, and manage existing and future 
fire and fuels software applications.  Existing fire and fuels software applications 
perform a variety of functions and can be combined to perform complex simulations.  
The variety of existing applications presents an integration challenge, as these 
applications were developed with different goals and requirements, at different times, and 
by different organizations.  In addition, these applications were written in different 
software languages, may currently run on different operating systems, have overlapping 
functionality, and require differing data formats.  The SOA approach evolved to address 
the issue of integrating such disparate services and software applications.  The design of 
the IFT-DSS software architecture is driven by the requirement to enable disparate 
applications to work together (including applications not yet developed) while requiring 
minimal additional effort from application developers to support the framework.  This 
objective can be achieved by designing an SOA architecture that is adaptable and generic 
enough to accommodate a broad variety of applications and functionality. 

 The need for a system that will support distributed collaboration and allow fuels 
treatment planners to perform ad hoc analyses customized for a particular location 
and/or situation.  One of the findings from Phase I of the STS Study was that fuels 
management and risk mitigation require a distributed approach to collaboration and 
present an ongoing need for data fusion.  Because of the variety of operational contexts, it 
is impossible to know the exact sets of models, tools, or data sets needed for every fuels 
treatment planning situation.  Therefore, customizable approaches are needed, requiring 
collaborative tools that support web-enabled methods of analysis.  A flexible and 
extendable software framework will allow tool developers or sophisticated users to 
rapidly configure, calibrate, or extend web-enabled capabilities to meet needs of a 
specific operational situation.  
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2.3 IFT-DSS USERS AND STAKEHOLDERS 

A major goal of the overall IFT-DSS is to develop a community of individuals from 
multiple agencies and organizations that can collaborate, exchange, and communicate science 
and information related to fuels treatment analysis and planning.  Collaboration among the fire 
and fuels community is important to improve the science and understanding of fuels treatment 
planning and to keep the data, software applications, and the IFT-DSS updated to meet current 
and future needs.  In addition, collaboration helps all agencies and organizations learn from each 
other about methods, challenges, and approaches for fuels treatment planning. 

Through the efforts of Phase II of the STS Study, five stakeholder groups were identified 
for the IFT-DSS: 

1. Approximately 1,000 fire and fuel operations managers, or fuels treatment 
specialists, at multiple federal and state agencies throughout the United States.  
Fuels treatment specialists will be the primary users of the system for year-round 
fuels treatment planning. 

2. Several (20) scientist developers who will provide new or updated science, 
models, and tools to the system.  Scientific collaborators will be periodic 
contributors to and users of the IFT-DSS. 

3. Database developers who will provide applications and data to the system, 
including: 

– a few (2 to 5) institutional application and data providers who will make 
large-scale databases available to the system (e.g., LANDFIRE and FSVeg); 
and 

– fuels treatment specialists who will upload or create local data sets. 

4. Information technologists and software specialists who will operate and 
maintain the system over time. 

5. Agency senior management, including the National Wildfire Coordinating 
Group (NWCG), who are responsible for issues related to business needs, 
resource allocation and prioritization, financial investments, and the operational 
efficiency and effectiveness of the community as a whole. 

 
A community development effort to engage each of the five stakeholder groups listed 

above is being conducted in parallel with the IFT-DSS POC software development effort.  The 
purpose of the community development effort is to gain the support and acceptance of a network 
of stakeholders that gain valuable services from the IFT-DSS and have responsibilities for the 
on-going functional and maintenance aspects of the system.  In particular, the community 
development strategy will (a) describe the various stakeholder communities and their 
characteristics; (b) present a plan for enhancing awareness about and use of the IFT-DSS 
software by various subgroups of these stakeholder communities; and (c) provide a roadmap of 
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how the IFT-DSS development team proposes to transition the software from the originators, 
JFSP and the NIFCG, to an agency Managing Partner for the NWCG.4 

2.4 OVERVIEW OF THE FUELS TREATMENT DECISION SUPPORT PROCESS 

At the most basic level, the fuels treatment analysis and planning process involves 
performing environmental assessments of fuels treatment options as mandated by the National 
Environmental Policy Act (NEPA).  This decision process centers on managing outcomes by 
modifying vegetation.  The decision support process involves preparing a detailed vegetation 
data set; modeling vegetation changes based on growth, treatments, and/or disturbance; and 
analyzing the results of the modeled vegetation.  A fuels treatment specialist then recommends 
which treatment option to apply. 

During the past year, many efforts have been made to understand decision support needs 
and the work flow processes involved in fuels treatment planning and management.  These 
efforts included surveying the fuels treatment planning community; conducting personal 
interviews with several fuels treatment specialists representing different land management 
agencies; engaging and soliciting feedback from the Interagency Fuels Treatment Work Group 
(IFTWG); and conducting meetings and discussions with fire and fuels software application and 
data developers.  As a result of these efforts, the following six work flow scenarios have been 
identified:   

 Data acquisition and preparation work flow scenario provides a simple and efficient 
way to collect and prepare the vegetation data needed for input to fire behavior and fire 
effects models. 

 Strategic planning work flow scenario enables identification of high fire hazard areas 
within an area of interest.  The focus of this work flow scenario is to identify where 
further treatment analysis may be warranted on the basis of potential fire hazard. 

 Spatially explicit fuels treatment assignment work flow scenario (1) simulates fuels 
treatment placement in areas of high fire hazard within an area of interest, and (2) 
simulates post-treatment influences on fire behavior and fire effects potentials.  The 
spatially explicit fuels treatment assignment work flow scenario extends the strategic 
planning analysis to applying treatments on the landscape.   

 Fuels treatment effectiveness over time work flow scenario enables the evaluation of 
the temporal durability of fuels treatments, that is, how long, in years to decades, a 
treatment will continue to lower potential fire behavior and fire effects within an area of 
interest.  This work flow scenario naturally follows the strategic analysis and fuels 
treatment assignment work flow scenario. 

 Prescribed burn planning work flow scenario provides the information needed to plan, 
document, and conduct a proposed prescribed fire.   

                                                 
4 For more specific information regarding the community development plan, refer to the FRAMES website at 
http://frames.nbii.gov. 
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 A proposed risk assessment work flow scenario provides a probabilistic risk 
assessment for fuels treatment planning. 

The work flow scenarios presented here can be divided into two categories:  (1) fuels 
treatment work flow scenarios and (2) a prescribed burn planning work flow scenario.  The 
prescribed burn planning scenario is often considered one phase of a fuels treatment scenario 
because prescribed burning is one way to treat fuels.  However, the development of a prescribed 
burn plan is a long and complex process, and fuels treatment specialists have indicated that the 
IFT-DSS could provide a useful service by supporting a work flow scenario specifically devoted 
to prescribed burn planning. 

The work flow scenarios defined here are not mutually exclusive and generally build on 
one another.  The IFT-DSS architecture is designed to be flexible and scalable so that new work 
flow scenarios can be implemented as they evolve.  Figure 2-1 is a work flow diagram showing 
how the six work flow scenarios fit together from a process perspective.  The IFT-DSS POC will 
implement a subset of the work flow scenarios described in this section (see Section 2.6.2). 
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Figure 2-1.  Work flow diagram illustrating how the fuels treatment planning 
work flow scenarios fit together from a process perspective. 
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2.5 IFT-DSS POC REQUIREMENTS 

Eight general requirements were established for the IFT-DSS.  These requirements and a 
brief description of how they will be realized in the POC are summarized in Table 2-1. 

Table 2-1.  IFT-DSS requirements and how they will be realized in the POC. 

Requirement POC Realization 
1. Support the decision support 

process, analysis steps, and 
software tools commonly used for 
fuels treatment planning. 

Implement three of the most common work 
flow scenarios: 

1. Data acquisition and preparation 
2. Strategic planning 
3. Prescribed burn planning. 

2. Provide users with software model 
choices within work flow scenarios. 

Implement NEXUS, FCCS, and FlamMap as 
choices for fire behavior and effects modeling. 

3. Provide data choices. Implement three data input options: 
1. User-supplied local data in .lcp file format 
2. User-supplied manual entry of data for 

single unit fire behavior modeling 
3. LANDFIRE data as default 

4. Support visualization of spatial and 
tabular data, data editing, and user 
interaction at each processing step. 

Implement interactive GIS map viewer and 
editing tool. 

5. Have a quality control, 
documentation, and audit-trail 
mechanism to support regulatory 
requirements. 

Initially implement reporting tools that will 
support the first three work flow scenarios.  At 
a minimum, the system will generate maps, 
graphs, and data tables, as well as information 
that can be easily used in a prescribed burn 
plan. 

6. Support analytical collaboration; 
that is, the system should provide a 
mechanism for fuels treatment 
analysts to publish and share 
methods and algorithms with other 
system users via a central system 
library. 

Users will have the ability to publish their 
methods and results for other users to view. 

7. Support scientific collaboration; that 
is, the system must be able to 
incorporate new models and tools as 
they become available through an 
authorship and publishing 
mechanism. 

Initially implement three fire and fuels 
applications: NEXUS, FCCS, and FlamMap.  
Develop software guidelines for integrating 
new models into the system.  See discussion of 
model integration approach in Section 2.8. 

8. Provide an easily accessible and 
straightforward user interface to all 
models and applications. 

Implement a web-based, easy-to-use GUI. 
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2.6 OVERVIEW OF THE IFT-DSS ARCHITECTURE 

This section is a strategic-level overview of the IFT-DSS software architecture.  A 
complete description of the architecture is provided in the IFT-DSS Software Architecture 
Design Document5.   

The IFT-DSS will serve as a software framework to integrate disparate vegetation data, 
vegetation simulators, fire behavior and effects models, and risk analysis tools (some of which 
are web-based) into a common GUI.  It will support the reuse of IFT-DSS applications and 
services over the Internet, and it will be a flexible, modern, web-friendly system.  

2.6.1 Architectural Components 

The core of the IFT-DSS software architecture consists of five elements:  (1) a 
multi-layered GUI, (2) a Scenario Database, (3) an executive application, (4) data and software 
services, and (5) a geospatial database.  A description of the general function(s) of these five key 
architecture components follows: 

 The multi-layered graphical user interface (GUI)—Provides the user with an access point 
into the IFT-DSS.  It controls the user experience and is the single portal for all system 
inputs and outputs. 

 The Scenario Database—Stores all information, including data and user information that 
is input to the IFT-DSS via the GUI.  The Scenario Database manages the user 
experience and the decision support process. 

 The Executive application—Works with the Scenario Database to invoke specific 
functions and services.  It functions as the internal system process controller and manages 
the flow of data and information within the system. 

 The data and software services—Provide the fire and fuels treatment domain data, 
software models, and tools that support the decision support process. 

 The geospatial database—Stores all project-related input, intermediate, and output data.  
It is called the geospatial database because it contains spatial data (map layers) but it also 
can contain non-spatial tabular data. 

Figure 2-2 illustrates the five key components of the architecture and their relative 
architectural arrangement.  Each component contains interconnected subcomponents, or layers, 
that perform specific functions within the system.  These components and their behavior are 
described in Sections 3 and 4. 

                                                 
5 http://frames.nbii.gov/documents/jfsp/sts_study/ift_dss_task2_tech_architecture_draft_20090212.pdf 
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Figure 2-2.  Illustration of the five key architecture components of the IFT-DSS. 

2.6.2 Key Architectural Features and Functions 

The IFT-DSS architecture is designed to support the following functions and features:  

 organize the decision support process, analysis steps, and software tools commonly used 
for fuels treatment planning; 

 provide data choices (i.e., standard treelist data, standard gridded data, and/or locally 
generated data); 

 enable visualization of spatial and tabular data, editing of data, and user interaction at 
each processing step; 

 streamline data preparation and processing by offering a mechanism to acquire, create, 
and transform input data (e.g., the ability to combine vector and raster data formats, 
perform vector-to-raster transformations, and vice versa); 

 provide a quality control, documentation, and audit-trail mechanism to meet regulatory 
reporting requirements; 

 provide guidance on user options (e.g., submodel choices) based on geographic scale and 
the type of analysis being performed; 

 enable the stopping and starting of analyses at any processing point; 
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 facilitate analytical collaboration through a central system library that allows fuels 
treatment analysts and scientists to publish and share methods and algorithms with other 
system users;  

 provide a mechanism to perform sensitivity analyses;  

 recognize user error and explain alternate actions; and 

 facilitate and encourage scientific collaboration through an authorship and publishing 
mechanism that is able to incorporate new models and tools as they become available. 

2.7 IFT-DSS POC FUNCTIONALITY 

The IFT-DSS POC will implement a subset of the work flow scenarios and functions 
described in Section 2.3.  The goal for the IFT-DSS POC at the end of the first year of 
development (May 2010) is to deliver a proof of concept product that is useful for the fuels 
treatment planning community.  To maximize the functional capabilities of the POC within the 
limited, one-year time frame, we have chosen to focus on the implementation of the data 
acquisition and preparation, strategic planning, and prescribed burn planning work flow 
scenarios. 

2.7.1 Data and Model Implementation 

The software applications and data listed in Figure 2-3 have been chosen for initial 
implementation because (1) they have been identified as widely adopted and used by the fire and 
fuels community; and (2) they are likely to be the most technologically feasible to incorporate 
into the system during the first year of development. 
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Figure 2-3.  Data, transformations, and models to be implemented in the IFT-DSS 
POC system. 

2.7.2 IFT-DSS POC Work Flow Scenarios 

This section describes the three fuels treatment planning work flow scenarios that will be 
implemented in the IFT-DSS POC:  1) data acquisition and preparation, 2) strategic planning, 
and 3) prescribed burn planning. 

Data Acquisition and Preparation 

The objective of the data acquisition and preparation work flow scenario is to acquire, 
prepare, and quality assure vegetation data for use in fuels treatment planning.  In the IFT-DSS 
POC, the data acquisition functionality will provide the user with three options:  (1) to manually 
enter data needed for prescribed burn planning (i.e., fuel model, fuel loadings, wind speed, etc.) 
into a form via the user interface; (2) to upload local data in Landscape File (.lcp) format; and (3) 
to access LANDFIRE National data.  The option to manually enter data will be implemented 
first, followed by the option to access LANDFIRE National data and by the import functions to 
upload local .lcp files.  As the POC is developed, other functionality, such as the ability to edit 
.lcp files and LANDFIRE data for local conditions, will be added.  Figure 2-4 illustrates the 
work flow process for data acquisition and preparation as it will be implemented in the IFT-DSS 
POC. 
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Figure 2-4.  Process diagram for the data acquisition and preparation work flow 
scenario to be implemented in the IFT-DSS POC. 

Strategic Planning Work Flow Scenario 

The objective of the strategic planning work flow scenario is to identify high fire 
hazard areas within an area of interest.  The focus of this work flow scenario is to identify 
locations where the potential fire hazard may warrant further analysis.  High fire hazard is 
expressed by high potential fire behavior and/or undesirable fire effects. 

In the IFT-DSS POC, FlamMap will be implemented to perform fire behavior 
simulations across all pixels in an area of interest.  Once FlamMap is functional, work will begin 
to implement the fire effects models Consume and FOFEM.  Consume will be implemented first, 
followed by FOFEM.    

FlamMap fire behavior outputs include fireline intensity, flame length, rate of spread, 
heat per unit area, horizontal movement rate, midflame wind speed, spread vectors, and crown 
fire activity.  Consume fire effects outputs are fuel consumption, smoke emissions, and heat 
release, while FOFEM simulates tree mortality, fuel consumption, smoke emissions, and soil 
heating.  Figure 2-5 summarizes the strategic analysis work flow scenario as it will be 
implemented for the POC. 
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Figure 2-5.  Process diagram for the strategic planning workflow scenario as it 
will be implemented in the IFT-DSS POC. 

Prescribed Burn Planning Work Flow Scenario 

The objective of the prescribed burn planning work flow scenario is to provide the 
information needed to plan, document, and conduct a proposed prescribed fire.  The IFT-DSS 
POC will have two pathways for fire behavior simulations:  running FlamMap for a single point 
location and using the Fuel Characteristic Classification System (FCCS) fire behavior calculator.  
For both options, users will manually input data parameters such as wind, fuel models, fuel 
moisture, and fuel loadings.  If a user selects the FlamMap pathway, FlamMap will function 
behind the scenes on a point location.  In the FCCS pathway, the FCCS fire behavior calculator 
will function on individual fuelbeds.  Fire effects will be simulated by either Consume or 
FOFEM.  Simulations of possible fire behaviors provide essential information for describing the 
burn plan prescription (Element 7), the ignition plan (Element 15) and the holding plan 
(Element 16).6 

FlamMap Pathway 

Using the FlamMap pathway in the POC, the user will input data parameters required by 
FlamMap.  As described in the strategic planning scenario, FlamMap’s outputs include fireline 
intensity, flame length, rate of spread, heat per unit area, horizontal movement rate, midflame 
                                                 
6 U. S. Department of Agriculture and U. S. Department of the Interior (2008) Interagency prescribed fire planning 
and implementation procedures guide. Available on the Internet at 
<http://www.nifc.gov/fire_policy/rx/rxfireguide.pdf>.  
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wind speed, spread vectors, and crown fire activity.  This information is crucial in determining 
how and when a prescribed burn should be conducted to meet specific objectives.  Consume and 
FOFEM will provide information about fire effects.   

In addition to allowing direct user input of fuels data, the POC will allow users to use the 
LANDFIRE National data layers for this workflow scenario.  When the user specifies the 
geographic coordinates for the prescribed burn, the appropriate data will be retrieved, and the fire 
behavior and fire effects programs will run simulations for the specified location.  Figure 2-6 
summarizes the process steps in this pathway. 

 

Figure 2-6.  Process diagram for the prescribed burn planning work flow scenario 
using the FlamMap pathway in the IFT-DSS POC. 

Fuel Characteristic Classification System Pathway 

For the FCCS pathway, the POC will provide the surface and crown fire behavior outputs 
currently found in the desktop version of the FCCS.  The most useful outputs for prescribed burn 
planning are reaction intensity, flame length, rate of spread, and crown fire potential.  Figure 2-7 
summarizes the FCCS pathway for the prescribed burn planning work flow scenario and 
provides more information about the data inputs and the fire behavior outputs from the FCCS 
calculator.  

In the POC, users will have the ability to manually enter fuelbeds into the FCCS, in much 
the same way as they do with the current desktop version.  In addition, a default set of gridded 
fuelbeds will be provided.  As functionality increases, users will have the ability to manually edit 
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fuelbeds within the FCCS, using an FCCS fuelbed editor similar to that available in the 
standalone version of the FCCS; however, this functionality may not be available in the POC at 
the end of the first year of development. 

The FCCS pathway will eventually include linkages to Consume and FOFEM.  The 
Consume outputs (fuel consumption, smoke emissions, and heat released) and the FOFEM 
outputs (tree mortality, fuel consumption, smoke emissions, soil heating) provide additional 
information to help planners address how to conduct a prescribed burn to meet the objectives 
described in the burn plan. 

 

Figure 2-7.  Process diagram for the prescribed burn planning work flow scenario 
using the FCCS pathway in the IFT-DSS POC. 

 

NEXUS Pathway 
 

Using the NEXUS pathway in the POC, the user will manually input data parameters 
required by NEXUS.  NEXUS outputs will include fire type, crown fraction burned, flame 
length, rate of spread, heat release, fireline intensity, mid-flame wind speed, crowning index, 
torching index, surfacing index, critical fireline intensity, critical flame length, critical canopy 
bulk density, and critical spread rate.  Note that some of the outputs of NEXUS are different 
from those of FlamMap and FCCS. 
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2.7.3 IFT-DSS POC Implementation 

Figure 2-8 illustrates the pathways (colored lines) and the order of implementation 
(numbers) proposed for the POC during the first year of development. 

NEXUS
Point Fire 
Behavior

FCCS
Point Fire 
behavior

FFP
Fuel 

Moisture

yaImpute
Treelist

imputation

FOFEM
Fire 

Effects

FlamMap
Grid Fire 
Behavior

FVS
Treelist
change

MTT
Fire 

transport

TOM
Treatment 

optimization

FBFM

Moistures

Winds

Fuelbed

Fuel Loadings

FSVeg
Treelist

Weather

LANDFIRE

FSVeg
Treelist

Local user
supplied

Transformations 
& QC

FVS
Treelist
change

Input Data
Data Preparation

Point Fire Behavior

Fire Effects

Treatment Optimization

Topography

Data Required Throughout

Change Over Time

Spatial Fire Behavior

Consume
Fire 

Effects

1

2

3

4

5

6

7

8

NEXUS
Point Fire 
Behavior

FCCS
Point Fire 
behavior

FFP
Fuel 

Moisture

yaImpute
Treelist

imputation

FOFEM
Fire 

Effects

FlamMap
Grid Fire 
Behavior

FVS
Treelist
change

MTT
Fire 

transport

TOM
Treatment 

optimization

FBFM

Moistures

Winds

Fuelbed

Fuel Loadings

FSVeg
Treelist

Weather

LANDFIRE

FSVeg
Treelist

Local user
supplied

Transformations 
& QC

FVS
Treelist
change

Input Data
Data Preparation

Point Fire Behavior

Fire Effects

Treatment Optimization

Topography

Data Required Throughout

Change Over Time

Spatial Fire Behavior

Consume
Fire 

Effects

1

2

3

4

5

6

7

8

 

Figure 2-8.  Illustration of the pathways (colored lines) and implementation order 
(numbers) for the IFT-DSS POC.7  

The main objective of the IFT-DSS POC development effort is to deliver a system that is 
immediately useful for the fuels treatment planning community.  To satisfy this objective, we 
chose to implement the work flow scenarios that have been identified, on the basis of feedback 
from the fuels treatment planning community, as the most immediately relevant. 

                                                 
7   The pathways indicated by black numbers are proposed for the second year of development.  It should be noted 
that the risk assessment work flow scenario is not shown on this diagram; however, the risk assessment portion of 
the system will be implemented in the second year of development. 
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2.8 IFT-DSS POC MODEL INTEGRATION 

The various data and software applications used in the fire and fuels community differ in 
manner of invocation, robustness, generality, types of modeling, execution platform, and in other 
ways.  Integrating these applications in the early stages of IFT-DSS development poses both 
technical and structural challenges because the applications are not in standard formats for 
integration.  However, an important community development goal is, over time, to adopt simple 
software development protocols and guidelines that facilitate the integration of scientific 
applications into the various SOA systems in the fire and fuels domain (e.g., IFT-DSS, BlueSky 
Framework, and WFDSS). 

Developers of individual applications are likely to have limited time, if any, to integrate 
their products with the proposed framework.  Therefore, tools and guidance will be developed to 
facilitate collaboration, including:  

 software tools to simplify and streamline the process of integrating new models into the 
IFT-DSS; 

 technical assistance to application developers, including software application 
programming interface (API) documentation and email or phone support; 

 easy registration of components and simplified delivery of applications and updates to 
users; and 

 clear specifications for data standards, and specifications of required APIs that the 
software applications are expected to support. 

In some cases, the original developers of key applications that are necessary for 
integration with the IFT-DSS may be unavailable or unable to make software modifications.  In 
these cases, assuming the source code is available in the public domain and can be decoded, the 
IFT-DSS development team will integrate the application by: 

 obtaining the source code, making necessary modifications, and integrating the 
application into the IFT-DSS; 

 “wrapping” the original software application in a wrapper application that is itself 
integrated into the framework; or 

 re-engineering the application in a way to allow it to integrate directly into the 
framework. 

In the early stages of the IFT-DSS POC development effort, the software applications 
will require integration into the IFT-DSS by one of the methods described above.  Over time, 
when a sufficient number of key applications support the new framework, it is likely that there 
will be significant user pressure on the developers of remaining applications (and new 
applications being developed) to provide voluntary support for the framework. 

For the IFT-DSS POC, three existing fire and fuels models will be integrated:  FlamMap, 
NEXUS, and FCCS.  When these applications are integrated with the IFT-DSS, their 
functionality will be available within the system; however, they will be accessed by the user 
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through the IFT-DSS GUI rather than the GUI of each individual application.  The following 
explanations show how these applications will be integrated into the IFT-DSS POC: 

 FlamMap will be integrated by obtaining source code and dynamic link library (.dll) files 
and making modifications necessary for integration with the IFT-DSS.  The IFT-DSS 
development team communicated with the developers of FlamMap, who agreed to 
provide FlamMap .dll files and support for making modifications to the FlamMap source 
code so that it can be integrated into the IFT-DSS POC. 

 NEXUS will be integrated using the “wrapping” approach described above. 

 The FCCS will be re-engineered for easy integration with the IFT-DSS.  It is fortuitous 
that the FCCS is currently being redesigned to make the desktop application more 
extendable, flexible, and maintainable.  As a result, the newly designed FCCS will be 
easily integrated with the IFT-DSS POC. 

Fortunately, the integration of the three applications listed above will use all three 
integration approaches (described in more detail in Section 4).  This diversity of approaches will 
provide the opportunity to develop protocols, guidelines, and possibly an integration toolkit for 
the science development community.  The protocols, guidelines, and toolkit developed during 
the first year of POC development can be tested early in the second year of IFT-DSS 
development as new applications are integrated.   

In the IFT-DSS POC, applications added to the system will become available within the 
system and can be viewed in a resource library.  The resource library will contain information 
about the application, its intended use, and authorship.  During the first year of development, 
applications will be added by the IFT-DSS development team.  By the end of the second year of 
development, a science collaboration engine that allows science developers to register 
applications within the system, assuming that their applications adhere to the integration 
protocols and guidelines, will be implemented. 

2.9 IFT-DSS CONNECTIONS TO OTHER SYSTEMS 

The IFT-DSS POC will also explore the initial connections to two other SOA systems in 
the fire and fuels community: the BlueSky Framework and WFDSS.  The BlueSky Framework 
has recently been expanded to provide access to its processes through web services.  IFT-DSS 
will leverage BlueSky services where possible.  For example, the BlueSky Framework provides 
ready access to the Consume fire effects model.  IFT-DSS may implement the Consume model 
by calling out to the Consume service provided by the BlueSky Framework.  The IFT-DSS 
development team will also work closely with the WFDSS development team to share 
technology.  There is overlap in functionality between the two systems, and IFT-DSS will reuse 
the work done by the WFDSS team to the maximum practical extent.  Identified areas of overlap 
include the data viewing and editing tools, access to LANDFIRE data, and data preparation for 
fire behavior models. 
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3. THE IFT-DSS POC USER EXPERIENCE 

An important aspect of the IFT-DSS architecture is system behavior and user experience.  
This section describes how the IFT-DSS POC will behave and how the user will interact with the 
IFT-DSS POC.  Draft mock-up screen shots are included to show what the GUI screens will 
contain. 

The IFT-DSS POC GUI will be web-based and will function within a standard web 
browser (e.g., Internet Explorer, Firefox, etc.).  A user login screen on the IFT-DSS POC website 
will be the main point of entry into the system.  The first time that users log into the IFT-DSS 
POC, they will be prompted to create a user profile that will capture each user’s email address, 
password, job title, organization, and other relevant information.  This user profile will be saved 
and used for subsequent logins.   

From a user perspective, a project analysis will involve three phases: (1) project setup 
and planning; (2) software model execution and iterative analysis; and (3) project finalization, 
documentation, and archive.  The remainder of this section describes the general experience of 
an IFT-DSS POC user during each of the three phases of a project analysis.  It should be noted 
that the GUI mock-ups are in draft form and will change as feedback is received. 

3.1 LOGGING INTO THE IFT-DSS 

The IFT-DSS POC user interface will provide a portal for a user to create project 
analyses, execute modeling scenarios, view the results of modeling scenarios, and manage and 
share projects with other IFT-DSS users.  The user interface will be secured and accessed by 
using an email address and password.  Figure 3-1 shows a mock-up of the IFT-DSS POC login 
screen. 

 

Figure 3-1.  Mock-up of the IFT-DSS user login screen. 

Once a user logs into the system, he or she will be able to create an account, a user 
profile, and a personalized home page.  This home page will be the user’s central location from 
which he or she can create a new project analysis, revisit past analyses, manage analysis projects, 
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and view or edit the user profile.  Figure 3-2 shows a mock-up of the IFT-DSS POC user home 
page.  Figure 3-3 shows a mock-up of the “My Profile” screen where users manage their profile 
information. 

The first time users visit
the IFT-DSS, they will establish
a user profile here.

The first time users visit
the IFT-DSS, they will establish
a user profile here.

 

Figure 3-2.  Screen shot of the IFT-DSS POC user home page. 

 

Figure 3-3.  Screen shot of the “My Profile” screen where users manage their 
profile information. 

User profile information will be stored in a table in the Scenario Database (discussed in 
Section 4), and will be used by the system for user authentication.  All project analyses created 
by a user will be associated with a user record in the Scenario Database.  The user will have the 
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ability to log out of the system at any point during an analysis session without losing information 
from that session.  When a user logs out of the system, he or she will be re-directed to the login 
screen. 

3.2 PHASE I – PROJECT SETUP AND PLANNING 

After a user logs into the system and reaches his or her home page, he or she will be 
provided a list of options.  From this list, the user can create a new analysis project, load an 
existing analysis project or modeling scenario, manage projects, and edit or view his or her user 
profile.  Figure 3-4 shows a mock-up of the user options available on a user’s home page. 

 

Figure 3-4.  Mock-up of the user options available on a user’s home page. 

Upon selecting the “New Analysis” link, the user will be presented with a project setup 
screen that will guide the user through the creation of a new project analysis.  Figure 3-5 shows 
a mock-up of the project setup screen.  
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Figure 3-5.  Mock-up of the IFT-DSS POC project setup screen. 

A user creating a new project analysis would go through four general steps: 
 

1. providing a project name;  

2. selecting an analysis objective; 

3. defining an area of interest; and  

4. selecting a modeling scenario pathway.   

In the first step, the user will provide a name for the project analysis that will identify the 
project throughout the system.  Next, the user will select an objective and be presented with the 
option to enter a description of the project analysis and any other relevant information associated 
with the project.  After selecting an objective, the user will select an area of interest (AOI), using 
a map viewer tool that will allow the user to draw a box on the map that generally defines the 
AOI. 

For the fourth step, the system will provide model scenario pathways appropriate to the 
selected objective.  The user will select one of these pathways with a point-and-click select tool.  
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3.3 PHASE II – SOFTWARE MODEL EXECUTION AND ITERATIVE ANALYSIS 

Once a user has set up an analysis, the navigation elements of the website will change on 
the basis of the selected modeling scenario, and the specific pathway for the selected scenario 
will be displayed as a tabbed navigation bar.  A dynamically generated scenario graph based on 
the selected pathway will also appear.  The scenario graph describes the data inputs, outputs, and 
processes involved in running the selected modeling scenario. Figure 3-6 shows a mock-up of 
the dynamically generated tabbed navigation bar and scenario graph for a sample modeling 
scenario. 

The modeling scenario graph will be interactive, allowing the user to click on a step in 
the graph and navigate to a data input screen associated with that step.  For example, if a user 
clicks on the “FlamMap” oval in Figure 3-6, a screen prompting the user for the information 
needed to run the FlamMap model will appear.  The scenario graph will also provide feedback to 
the user by graphically depicting how far the user has progressed through the steps of the 
modeling scenario run at any given time.  The purpose of the modeling scenario graph is 
threefold:  (1) to visually describe the inputs, outputs, and processes associated with a selected 
modeling scenario pathway, (2) to allow the user to access the input screens for the selected 
modeling scenario pathway, and (3) to report the status of a modeling scenario run once the run 
has been executed.  

The pathway that defines the modeling scenario will be stored in the Scenario Database 
and dynamically retrieved by a program called “pageCreator” at run time.  The pageCreator’s 
role will be to interact with the database and retrieve pages and elements for each page, based on 
the selected modeling scenario.  The pageCreator will also dynamically generate a scenario 
graph (Figure 3-6) for the modeling scenario selected.   
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Dynamically generated
tabbed navigation bar.

Scenario graph.

Dynamically generated
tabbed navigation bar.

Scenario graph.

 

Figure 3-6.   Mock-up of the dynamically generated tabbed navigation bar and 
scenario graph for an example modeling scenario.   

At this point, the user can navigate through the modeling scenario pathway by clicking 
through the tabbed navigation tool (as shown in Figure 3-6) or by using the dynamically 
generated modeling scenario graph (Figure 3-6).  These styles of navigation allow the user to 
iterate the steps of the modeling scenario.  At each step, the user will be able to provide input or 
accept default values by using a range of input tools such as text field inputs or a GIS-based 
visualization and editing tool  

At each step in the modeling scenario pathway, the user will also be able to execute an 
individual model by clicking on a “run” button on the model input screen (lower right corner of 
Figure 3-6).  The outputs from the model will be displayed on the following screen (see the 
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example of fireline intensity from FlamMap in Figure 3-7) and will become the inputs to the next 
model or process in the modeling scenario pathway. 

  
Figure 3-7.  Example results of fireline intensity from FlamMap. 

As a project analysis is performed, the IFT-DSS will track the status of model run 
scenario processing time.  The user will be able to view status updates on their user home page 
or receive email status notifications for processes that require a long period of time to complete.  
The email notifications will include a link connecting the user to the completed process step, 
allowing the user to continue stepping through the scenario from where they left off. 

Figures 3-8 and 3-9 show the screens that a user would navigate to perform prescribed 
burn planning analysis using FlamMap to model fire behavior and Consume to model fire 
effects.  
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Figure 3-8.  Example page showing input options to model fire behavior for a 
range of weather conditions using FlamMap. 
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Figure 3-9.  Example page for exploring fire effects modeling results for a range 
of weather conditions using Consume. 

3.4 PHASE III – PROJECT FINALIZATION, DOCUMENTATION, AND ARCHIVE 

After reaching the end of a modeling scenario, the user will be able to save the scenario 
as a “run” in the project analysis.  The project will then be accessible from the “Manage 
Projects” screen shown in Figure 3-10.  The Manage Projects screen allows the user to view 
projects, view runs within a project, view project results, and assign sharing privileges to other 
users.  For example, a user could designate another user as a contributor who would have fewer 
(or read-only) privileges than the project owner.  The user can also archive a project from this 
screen. 
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Figure 3-10.  Example Manage Projects screen in the IFT-DSS POC with two 
project analyses displayed. 

From the Manage Projects screen (Figure 3-10), the user will be able to view and edit a 
project or modeling scenario run, share a project with other users and specify their user 
privileges, archive a project, and generate reports related to a specific project.  The archived 
projects will continue to be available to the user but will no longer be considered active.  See 
Section 4.1.9 for details regarding the report generation for a project. 
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4. TECHNICAL SOFTWARE DESIGN 

This section presents the IFT-DSS POC software design in a manner that is generic and 
almost completely independent of programming language, hardware, and operating system 
implementation decisions; that is, the design can be realized in a variety of ways using any one 
of many hardware and operating system configurations.  It is important to realize that this design 
was constructed in a way that system components can be developed in different languages and 
use different operating foundations while still conforming to this design.  Approaching the 
design in this manner allows the software architect to maintain a maximum degree of modularity 
when considering how the system will be constructed.  Section 5 contains the language, 
hardware, and operating system details initially proposed for the IFT-DSS POC. 

The presentation of the IFT-DSS POC software design in this section is separated into 
three parts: (1) a description of the system components, (2) a description of the connections 
among these components, and (3) a description of the behavior of the system as a whole.  
Figure 4-1 is a diagram of the overall structure and components of the system.  The structural 
components are labeled with letters, and the software interfaces are labeled with numbers.  Each 
of the nine components, A through I, is described in Sections 4.1.1 through 4.1.9; each of the 
seven software interfaces, labeled 1 through 7, are described in Sections 4.2.1 through 4.2.7.  
Section 4.3 revisits the components and software interfaces and describes how they interact. 
 
Components 
 

A. Models – The scientific and computational components of the system; all other 
components support the model operations. 

B. Model Adaptors – Enable integration of different models into the system 
C. Geodatabase (GDB) – Stores the actual data inputted to and outputted from models 
D. Data Sequencer – Relays data between the Geodatabase and models 
E. Executive – Directs the execution of the models 
F. Scenario Database – Stores representations of how different “runs” of models are 

orchestrated 
G. Navigator Web Application – Visualizes spatial data, allows users to edit data values for 

model inputs, allows users to execute runs through scenarios or parts of scenarios, all 
from a web browser 

H. Project and Planning Database – Stores administrative data about fuels treatment projects 
I. Planner Web Application– Enables users to manage fuels treatment projects from a web 

browser 
 
Interfaces 
 

1. Model Data Exchange – Connections between machines running models to relay model 
inputs and outputs 

2. Model Control – Connections between the Executive and model adaptors to prepare the 
model data exchange connections 

3. Sequencer Control and Monitoring – Interaction between the Data Sequencer and 
Executive to manage scenario execution 
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4. Executive Scenario Polling and Feedback – Executive queries of the Scenario Database 
for required data, and feedback about model and machine execution performance 

5. Executive Launching and Progress Reporting – Web application signaling of the 
Executive to compile and run a scenario segment; and the Executive reporting progress 
back to the web application 

6. Map and Data Presentation Interface  – Communication between the Geodatabase and the 
web application components 

7. Web Page Generator and Database Interface – Web application queries of the Scenario 
Database to produce the web pages displayed to the user for model inputs and outputs 
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Figure 4-1.  Overall structure of the IFT-DSS depicting the system’s major 
components (with lettered indicators) and software interfaces (numbered).  
Features that will not be implemented in the IFT-DSS POC are represented with 
dashed borders. 



 
 

 4-3

 

All of the system components will be realized in the IFT-DSS POC with two exceptions.  
The collaboration interfaces will not be fully realized, as indicated with dashed borders in Figure 
4-1.  Other components will be fundamentally complete, but some of the more complex scenario 
execution optimizations described in section 4 may not be present.   

Experience gained from using the initial version of the POC will help determine priorities 
for optimizing existing features and adding new ones.  It may prove to be more valuable to add 
new models and scenarios than to maximize resource utilization through parallelization of model 
execution.  Some of the optimizations will only become possible when system deployment 
configuration and run execution times are known.  The features involved in these optimizations 
reside primarily within the executive, data sequencer, and model adaptors. 

The collaboration interfaces include support for analytic collaboration among planners 
sharing knowledge and effort and for scientific collaboration in the authoring of models and 
model scenarios.  These two components will not be part of the initial POC system.  The analytic 
collaboration interface will be implemented early in year 2 of development.  At that time, 
support for scientific collaboration will also be added through implementation of the scenario 
editor and other tools for software development. 

The analytical collaboration interface is the mechanism by which planners work together 
on projects.  This includes control of shared access to project data and runs.  A project owner 
will be able to solicit input from selected peers.  Planners will also be able to discuss the 
preliminary results through a project-specific message relay or discussion forum.  This will 
augment the planning project results by encouraging planners to work together within the 
system.  It will also document quality assurance by recording peer feedback with the other 
project data. 

The scientific collaboration interface provides a mechanism for advanced users, data 
providers, and software developers to add new capabilities to the system.  This will include a 
scenario editor and a software development environment.  The scenario editor is the mechanism 
by which advanced users can construct custom analysis pathways.  Users of the initial IFT-DSS 
POC GUI will be able to select an analysis objective and choose from the predefined processing 
scenarios supporting that objective.  The scenario editor will extend this capability by allowing 
users to select data and model sequences to create custom analysis pathways. 

During the first year, the IFT-DSS POC development team will concurrently integrate the 
initial set of modeling capabilities and produce the environment in which these models are 
developed and run.  During this period, they will also solicit feedback from the scientific 
developer community to identify the software development tools that will complete the analytical 
collaboration interface. 

4.1 COMPONENTS 

The components described in Sections 4.1.1 through 4.1.9 are software programs and 
subsystems.  It is possible to realize this design with a variety of hardware topologies.  Some of 
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Models are denoted by the letter A in Figure 4-1. 

 

the components, such as the distinct databases and the web application components, may be 
implemented as a single entity that embodies a combination of them all. 

4.1.1 Models 

Models constitute the heart of the 
system, as they are the scientific and 
computational components of the system.  
All of the other system components were 
designed to support the operation of the 
models and the examination of the model 
outputs. 
 
 
 

The first models to be integrated into the IFT-DSS POC will be programs (or parts of 
programs) that already exist and are in use in the fire and fuels community.  These models 
include FlamMap, NEXUS, FCCS, Consume, and FOFEM.  These models will be integrated into 
the IFT-DSS POC by the methods described in Section 4.1.2. 

In the future, as protocols and guidelines for integrating models into the IFT-DSS become 
available to model developers, it will be much easier for a model to be integrated into the 
IFT-DSS.  Future models will be better aligned with IFT-DSS’s execution paradigm, resulting in 
several advantages:  they will be much smaller than any standalone modeling program, they will 
be simpler to develop and maintain, and they will be able to take full advantage of the system’s 
parallel processing architecture.   

Developers will be able to integrate models into the IFT-DSS by using the “Model 
Subclass” method described in Section 4.1.2.  In this simple and efficient approach to 
incorporating models into the system, future models may consist of small sections of 
programming code that define and execute specific, self-contained functions.  For example, 
many existing standalone software applications contain programmed functions that are linked 
together and tightly coupled to a user interface.  In the future, it will be more desirable for model 
developers to program functions as discrete pieces of programming code that are unlinked to 
other functions and are decoupled from a user interface.  Ideally, they will consist of a relatively 
small number of lines of program code embodying a single behavior or very few modeling 
equations.  This approach will allow new functions and features to be easily integrated into the 
IFT-DSS without the need to redesign the IFT-DSS software framework or user interface. 

A simple example of a model is one that computes slope and aspect given elevation.  For 
example, given a raster grid of elevations with square cells of length S on a side as shown in 
Table 4-1, the function that computes the slope for the central cell [2,2] is shown as pseudocode 
in Table 4-2 in the context of extending the model parent class.  (The model parent class is 
predefined, and there is only one model parent class for all models.)  This function is the only 
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code that the developer will have write in order to add the slope calculator “model” to the 
IFT-DSS system. 

Table 4-1.  Representation of an array of grid cells containing elevation values. 

Z11 Z21 Z31 

Z12 Z22 Z32 

Z13 Z23 Z33 

 

Table 4-2.  Pseudocode for an example slope/aspect model. 

Class ElevationToSlopeModel extends ModelParent 
Override ExecuteModel(neighborElevations) 

// calculate the slope and aspect 
 

 // calculate east-west gradient 
 dX = S*((Z31 + 2Z32 + Z33) – (Z11 + 2Z12 + Z13))/8 
 
 // calculate north-south gradient 
 dY = S*((Z11 + 2Z21 + Z31) – (Z13 + 2Z23 + Z33))/8 

 
  slope = sqrt(dX2 + dY2)  
  aspect = tan-1(dX/dY) 
  return an object containing slope and aspect 

end ExecuteModel 
end ElevationToSlopeModel 
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Model Adapters are denoted by the letter B in Figure 4-1. 

 

4.1.2 Model Adaptors 

The model adaptors constitute an 
environment—a layer of software—that 
makes it possible for models to be added 
to the IFT-DSS and function as services.  
The model environment will consist of 
several sublayers and will encapsulate 
two software interface protocol controls.  
Figure 4-2 below illustrates how these 
layers and protocols enable three 
methods of adding models to the IFT-
DSS.  Each method is a different type of 
model adaptor. 
 

One protocol control (depicted by the large arrow above the Data Sockets box) is used to 
exchange data among models within the system and to interface with the Geodatabase (C in 
Figure 4-1).  The other protocol control, depicted in Figure 4-2 by the small arrows above the 
OTS (off-the-shelf) Application Server boxes, is used to initiate the model’s processing and 
guide the configuration of data sockets.  These two protocol controls correspond to software 
interfaces 1 and 2 in Figure 4-1 and are described in Section 4.2.1 and 4.2.2.  All of the models 
in the IFT-DSS will use the same two software interface protocol controls, and these software 
interfaces will be exposed to the rest of the IFT-DSS system.   
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Figure 4-2.  Illustration of the three model hosting methods by which models can 
be integrated into the IFT-DSS and function as services. 

Model Integration Methods 

As shown in Figure 4-2, there will be three types of model adaptors, i.e., three ways by 
which a model can be added to the IFT-DSS. 

1. Model Subclass Method – The adaptor type on the left depicts the most efficient method.  
It consists of a standard API that includes an application server, a hosting program, 
communication handlers, and all of the data handling code required to operate the 
modeling code.  The model is added to this code base by extending (creating a subclass 
of) the model parent class.  The other “wrapping” methods employ these same 
components (except the model parent class). 

2. Wrapped Program Method – The middle adaptor type depicts a more expedient method 
for deploying existing model programs by providing a wrapper program that 
communicates with an existing model program and translates the model inputs and 
outputs to the format standards used by the IFT-DSS.   
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3. External Model Service Method – The adaptor type depicted on the right side of 
Figure 4-2.  This method allows the IFT-DSS system to incorporate functionality from 
other modeling systems. 

These methods all share a number of important features.  Near the top of each module stack 
depicted in Figure 4-2 are three shared features represented by rectangles labeled “OTS 
Application Server”, “Model Host Program”, and “Data Sockets”.  Below each group are various 
forms of “Model” components. 

Model Control Communications 

The first component required for service oriented model hosting is an application server.  
Our system will employ an “off-the-shelf” solution for this requirement.  The purpose of this 
component is to receive messages from an external control, interpret them as requests for model 
execution, and act on them by deploying the model host program.  “Models” are computational 
objects, at the heart of each model integration method, that run on the distributed compute 
servers of the IFT-DSS.  The OTS service provider causes the models to run, passes them 
arguments and commands, and relays status information.  Model hosting programs receive the 
control messages from the Executive (E in Figure 4-1).  The protocol of the commands is 
described in Section 4.2.2.  The application server communicates status information from the 
model components back to the Executive through the same interface. 

Model Data Communications 

In addition to command and control data, the models will communicate model data on a 
peer-to-peer basis.  These data pass among models running on distributed computational servers, 
the GDB, and other possible (interface) subsystems.  See Figure 4-3 below for a Unified 
Modeling Language (UML) diagram corresponding to the following description of model 
communication infrastructure. 

Each model program will have zero or more input streams and zero or more output 
streams.  Each input stream will de-multiplex data from one or more connections to an output 
stream of another model.  Likewise, each output stream will multiplex or broadcast through one 
or more connections to the input streams of other models.  Information about the number of 
streams, their data type, their fan-out or fan-in, and the specific addresses of each channel socket 
will be received from the Executive.  
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Figure 4-3.  UML diagram of the model communication infrastructure. 

Each output connection has a “multiplexing polynomial,” which allows parts of a model 
to be run on different machines.  It is also possible to do the same work on multiple machines or 
to use the output from one step as the input to several later steps.  Likewise, data can 
simultaneously be sent to the next modeling step and to the Geodatabase for archiving.  This data 
distribution capability is achieved by the member functions of the input and output stream 
classes, which use the multiplexing polynomial to sequence data from an output stream to a set 
of input streams.  These classes have members common to stream-like objects including open(), 
close(), read(), and write().  However, the actual behaviors of these class members are different 
from those of their familiar analogues.  To illustrate these differences, Table 4-3 shows the 
pseudocode for the output stream members.



 
 

 4-10

Table 4-3.  Pseudocode for key member functions to the output stream class. 

 
Open() 
 For each connection 
  Save multiplexing polynomial coefficients and ranges 
  Fork and in the new thread 
   Note the time 
   Open the connection 
  End thread 
 End for 
End of open()  
 
Close() 
 For each open connection 
  Terminate the connection (i.e. session) 
 End for 
End of close() 
 
writeObject() 
 format the object into a packet 
 for each destination connection 
  check object index against multiplex polynomial 
  if index is in a write window 
   fork 
    wait until connection is ready  

                              send the packet 
through the connection 

    note the time 
   end thread 
  end if 
 end for 
end of writeObject() 

The open() and writeObject() member functions must use separate threads for each 
connection because each of these can require some time to synchronize with the other end of the 
connection.  In the pseudocode this is represented with “fork” and “end thread” clauses.  None of 
the actual programming languages that may be used to implement these behaviors actually has an 
analogous construct. 

Input streams will have open() and close() behaviors similar to the corresponding 
behaviors of output streams.  But, there will be no need for a channel select polynomial.  All of 
the data that arrive at an input channel will be processed and the input streams will have a 
readObject() behavior instead of a writeObject() behavior.  ReadObject() will read one object 
from any of the one or more open connections.  Table 4-4 shows the pseudo code for the input 
stream member. 
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Table 4-4.  Pseudocode of the readObject member function of the input stream 
class. 

 
readObject() 
 for each input socket 
  check for pending data  
  note how long it’s been waiting 
 end for 
 read the packet that has been waiting the longest 
 extract the data object from the packet 

  if an object with this packets index has already been 
received 

  discard packet 
   start over from the top 

 else 
  return the received object 
 end if 
end of readObject() 
 

The stream classes handle the peer-to-peer flow of science data.  In addition, the model 
host program must communicate control and status information with the Executive and cause the 
model to be performed for each set of data inputs.  This part of this program is the same for all 
models. 

The processing here is independent of output multiplexing, but it must take into account 
an analogous property of inputs.  Each input stream must have a known “front aperture” 
description.  The front aperture is a specification of the neighborhood of locations at which 
parameters must be supplied to the model in order for the model to calculate its result.  The front 
aperture of many (aspatial) models is a delta function.  In other cases, it may span the entire 
domain of the input.  Both of these conditions can be indicated with flags.  In other cases, ranges 
of values will have to be specified for each input coordinate. 

Processing entails running the model many times.  The sequencing of model execution is 
determined by the parameters of the program.  One form of sequencing will be to execute the 
model once for each record in a specified (“indexing”) input stream.  Indexing streams may have 
to be constrained to have only delta function entrance pupils.  In some cases, there may be no 
suitable input stream.  When this occurs, a special form of input stream is required.  This pseudo-
input stream would have no connections but would respond to readObject() calls with indexed 
null data rows. 

The model host program is responsible for configuring peer-to-peer connections with 
other models, managing all communications, and executing the model as needed.  A very brief 
pseudocode of this component is presented in Table 4-5.  The data handling for each model is 
divided into phases.  Only a single phase is required, but generally, three I/O phases will 
correspond to prerequisite, concurrent, and retrospective communications.  More phases are 
possible, and there is no benefit in constraining the range of supported I/O phases.  Zero or one 
model functions will be executed during each model phase. 
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During each processing phase, all of the outputs are initiated, and a separate processing 
thread is produced to handle each input.  The input threads each initiate the communications 
associated with a single input stream, receive and process each data object, and finally terminate 
the communications.  The processing done by these threads is limited to unpacking received data 
objects and distributing their content into the appropriate areas of large, queue-like data structure 
where model input objects are staged.  Whenever the data insertion results in the completion of a 
staged data object, a message is sent to the main thread.  The main thread, upon receiving 
notification from one of its daughter threads, causes the model’s routine to execute and process 
the staged input data.  Any output objects that result are transmitted.  Monitoring of staging 
queue object completeness continues until all of the input threads terminate.  Then the main loop 
finishes and either moves on to the next phase or terminates. 

Table 4-5.  Pseudocode of the model hosting program. 

 
Model Hosting Program: 
 Parse all control parameters from dispatcher 
 For each phase of the model 
         Open each output steam 
         For each input stream 
   Fork and in the new thread 
                 Open 
                 WHILE (still objects to read) 
       Read in an object 
        Unpack 
   For each effected ingest queue object (including new 
ones) 
       Distribute data into ingest queue object 
       If ingest queue object is ‘complete’ (i.e. 
aperture full) 
    Send message parent thread 

       End if 
   End for effected queue entries 
      END WHILE 

             Close 
      End of thread 
     End for all input stream 
     WHILE (more ‘aperture full” messages expected) 
  Wait for ‘aperture full’ message from daughter thread 
  Do the model operation(s) 
  For each output stream 
      Write a result object 
         End for  
         END WHILE 
         Close everything 
 End for phase 
END of model hosting program 
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The Geodatabase is denoted by the letter C in Figure 4-1. 
 

 

4.1.3 Geodatabase 

The Geodatabase (GDB) is used to 
store a special form of geographic 
information system (GIS) data.  In addition 
to the spatial properties common to a GIS, 
the GDB will manage data with non-spatial 
domains.  It will manage raster images from 
the LANDFIRE database, tree-list and 
polygon stand layers such as those used by 
the Forest Service’s Forest Vegetation 
Simulator (FVS) software, and other forms 
of multidimensional data.  The GDB will 
also handle time series and parameter 
ensemble data sets. 

The IFT-DSS POC will have relatively modest GIS requirements compared to those that 
must be added as the system matures.  For the IFT-DSS POC, the GDB will be required only to 
manage raster spatial data; however, the Geodatabase in the POC system will be designed to 
handle additional data types that will be needed as the system matures.  The GDB will house 
these data (images) and any ancillary data required to manage them.  All of the data for a single 
study will be stored at the same spatial resolution and in the same map projection.  The images 
will contain bands for all of the parameters provided by LANDFIRE plus those produced by 
FlamMap, FOFEM, and Consume.   

FCCS parameters (standard and a limited number of custom fuelbed parameters) will 
only be supported through lookup table indirection.  Indirection is the ability to reference 
something using a name, reference, or container instead of the value itself.  FCCS image files 
will contain only pixel values that correspond to indices in that table and not the actual fuelbed 
data themselves.  When a fuelbed is modified, either the modification will be shared by every 
location in the study that is assigned that fuelbed, or a new fuelbed will be created.  The user 
interface will, therefore, have to support two modes of modifying spatial data.  It must be 
possible to modify or create fuelbeds and to reassign what fuelbed a specific location is 
associated with.  A similar, indirect, storage structure may be used for other raster data types 
(including LANDFIRE-like layers) as well.  Later, when support for polygonal data sets is 
added, a similar, indirect method will be employed.   

The data structures used to manage layers where the above indirect coding is not used 
will be remarkably similar to those used to house the indirect values.  A table of parameters will 
exist in either case.  This table will house unique records in the indirect mode and a much larger 
number of non-unique ones in the direct mode. 

In addition to supporting the map layers for modeling, the GDB will accept ancillary 
layers from the users and present these with the other map layers.  These layers will assist the 
user in navigation and could be included in reports.   
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The Data Sequencer is denoted by the letter D in Figure 
4-1. 

 

Every processed map layer will also have a hidden layer containing the time of last 
update.  These timestamp layers, and the production of processing maps based on them, will be 
among the most important features of the GDB.  The generation of masks (that indicate where 
the content of one layer is newer than the content of another) is an important early step in the 
compilation of scenario fragments.  If this operation is not readily supported by the GDB, similar 
functionality will have to be built into the Data Sequencer described in the following section.  
Additional binary morphologic operations will likewise have to be performed.  Most notable 
among these will be dilation of masks to reflect the projection of the mask through a model’s 
front aperture.  

Upon initiation of a run, the GDB will be directed to generate working data sets from pre-
existing standard data, user supplied layers, or default value sets.  The system will have access to 
a complete copy of the LANDFIRE data.  These map layers will serve as the default spatial data 
layers unless the user has provided study-specific images containing the same parameters.  As 
the system’s capabilities expand through the addition of new models and scenarios, the library of 
default imagery will have to expand to support the additional model inputs. 

4.1.4 Data Sequencer 

The Data Sequencer is an 
interface between the models and 
the geographic information 
system where the modeling inputs 
and outputs are stored.  Since the 
sequencer determines what data 
are processed, it is responsible for 
managing key aspects of system 
load and is thus an important 
component of the system. 
 

Beyond simple speed considerations, this component has the opportunity to maximize 
performance by limiting the waste and redundancy in the data processed by the models.  If 
performance constraints merit, the component will exploit these additional opportunities.  
Although the initial version of this program is not likely to have these features, the design does 
account for them, and their implementation will be prioritized along with expansion of the initial 
suite of modeling capabilities. 

It is desirable to ensure that only required data are processed.  When only a small section 
of the input data needs to be processed (as is the case when models must be re-executed 
following edits), the models’ front aperture description will be used to ensure that only the 
required areas of the input data are reprocessed.  This check requires cooperation between the 
Data Sequencer, which has access to relative data ages, and the Executive, which has the 
apertures and controls the topology of the compute service network. 

 



 
 

 4-15

A later version of this component may further improve processing efficiency by 
determining which data within the edited regions are redundant and therefore do not need to be 
processed.  This type of optimization is most easily incorporated into the model hosting 
programs, but the gains may be greater if implemented in the Data Sequencer component. 

Prior to process initiation, a series of messages will pass between the Executive and the 
Data Sequencer.  These will include communication about masks that depict the areas affected 
by data updates.  By working with the Executive (described in the next section) and the GDB to 
process these data, this program will generate input and output masks for the affected areas of 
the scenario fragment.  The Executive (after distributing the scenario fragment across the pool of 
computational resources) will send information to the Data Sequencer that the sequencer will use 
to make the necessary input and output connections and plan the distribution of data to the 
appropriate outputs.  Finally, the Data Sequencer will receive information from the Executive 
upon initiation of the execution of a scenario fragment.  This information will include the 
identity of the run, a list of the run fragments saved results, and a list of required inputs and 
intermediate data sets.  The inputs and results lists will trigger the generation of write and read 
sockets as described earlier.  The interaction described above is summarized in Section 4.3.3 as a 
swim lane diagram (Figure 4-11). 
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The Executive is denoted by the letter E in Figure 4-1. 
 

 

4.1.5 Executive 

The Executive component 
compiles a scenario segment and is 
invoked in response to an action by 
the user.  A scenario is represented as 
a Directed Acyclic Graph (DAG).  In 
the DAG, the models are the nodes 
and the data passed between models 
are the edges, or vectors.  The 
Executive receives parameters 
defining which DAG vector of which 
scenario should be produced. 
 

The Executive responds by querying the Scenario Database for additional data about the 
run’s scenario.  After analyzing these data, it causes model services to begin running with 
appropriate peer-to-peer data connections.  Then, it directs the GDB Data Sequencer to send the 
required input data.  This, in turn, causes the models to execute and result data to be returned to 
the GDB.  This process is summarized in the brief pseudocode shown in Table 4-6. 

Table 4-6.  Brief pseudocode for the Executive program. 

Executive program 
 Receive scenario (section) from User Interface 
 Get model, server, scope, etc data from scenario DB 
 Compile a Network of connections and processes 
 For each process 
  Connect to server and start process 
  Relay connections and other configuration data 
 End for 
 Monitor status and diagnostic feedback 
 Notify user (by popup or email) 
 Update resource capabilities in Scenario Database 
End of program 

 

The most complicated part of this program’s work is the compilation of a scenario 
fragment into a set of program execution processes and connections among these processes.  
This compilation begins with several recursive, binary, spatial operations.  As noted above, some 
of this work will be done by the Executive, and some of it must be delegated to the GeoData 
Sequencer or the GDB. 

Since recursion is difficult in the relational database management system (RDBMS), the 
scenario’s entire set of models and connection will be retrieved from the database.  Then the 
Executive will recursively search the scenario’s directed acyclic graph to generate a (possibly 
redundant) tree-like graph of model nodes and communication vectors.  Using code on the 
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returning side of the recursive calls, the Executive will exhaustively traverse this graph, calling 
on the GDB or Data Sequencer to generate an input newer than the output mask for each input to 
each model.  If necessary, this step can be optimized or omitted altogether in cases where enough 
data are modified in the high-order branches to warrant recomputation over the entire domain of 
the run.  Each of these masks is projected forward through the model apertures and onto the 
output space of the scenario fragment’s final results.  This combined, dilated mask identifies the 
part of the results layer that must be recalculated.  A final recursion across the DAG in which the 
output mask is back-projected (with another binary dilation) from each model output to the 
corresponding inputs is performed.  This final mask-building process will use model latency to 
take advantage of any temporary, intermediate result layers that may have been saved. 

Next, any redundancies in the masks are removed (by “or” operations) and the area of 
each mask is integrated.  These areas, multiplied by difficulty estimates for each model, give the 
system fairly accurate estimates of the size of the modeling tasks that are to be done. 

If no single task is very large and the number of computers available is greater than the 
number of tasks, or if all of the tasks combined add up to a small amount of work, then each 
model is assigned to the computer most able to do it in order of model difficulty.   

Conversely, if it is worthwhile to use a larger network of computers to execute some parts 
of the scenario fragment in parallel, the work is divided into a large number of approximately 
equal-sized small tasks.  These tasks can be assigned to the computers best suited for them based 
on task difficulty and bandwidth limitations among computers. 

The pseudocode in Table 4-7 shows the compilation steps.  The compiler in the 
initial version of the Executive will not be as complex as the compiler described here.  
Aperture calculation with a rudimentary implementation will be adequate because all of the 
models to be incorporated in the IFT-DSS POC will have delta function or space-spanning 
apertures.  
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Table 4-7.  Pseudocode for compiler component of the Executive. 

MakeEffortTreeNode(target) 
 For each parent of target 
  MakeEffortTreeNode(parent) // RECUR 
  getMaskOf(parent younger than target) 
  project parent mask through aperture onto target mask 
 end for 
end MakeEffortTreeNode 
 
BackProjectMaskOf(Target) 
 For each parent of target 
  project target mask through aperture onto parent mask 
  BackProjectMaskOf(Parent) // RECUR 
  Assign parent work phase  
   based on phases of connection between target and Parent 
 end for 
end BackProjectMaskOf 
 
COMPILER(run, target) 
 Get scenario for run 
 Make effort tree node(target) 
 BackProjectMaskOf(target) 
 For any redundant nodes 
  Join mask by OR 
 End for 
 For each node 
  Count mask size 
  Estimate effort 
 End for 
 For each work phase 
  Use approximate histogram equalization  
   on the distribution of effort estimates  
   to divide the work into multiple, small tasks 
 end for 
 Partition work space and assign data connections among tasks 
 For each task, in inverse order of complexity 
  Assign task to the most competent machine 
  Remove machine from work phase’s resource pool 
 End for 
END of COMPILER 
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The Scenario Database is denoted by the letter F in 
Figure 4-1. 

 

 

4.1.6 Scenario Database 

The Scenario Database stores 
relational database representations of 
scenarios and their accompanying DAGs.  
The Scenario Database provides data to 
control GUI screen formatting and model 
execution and is vital to the behavior of 
the system.  The conceptual data model 
and its influence on system behavior will 
be discussed in this section. 

 

The data model’s purpose is to represent a DAG for each scenario (see the conceptual 
Entity Relationship Diagram (ERD) in Figure 4-4).  By representing a scenario as a DAG, the 
Executive can resolve how and when to execute models.  The DAG will also be represented in 
the GUI to facilitate user navigation through a scenario. 

Models are fundamental building blocks of a scenario and are represented as nodes in a 
DAG.  A Model entity has inputs and outputs, which are linked together.  These links are 
represented as the data model Vector entity.  To ensure that models’ inputs and outputs are 
validly linked, each input and output maps to a ParameterGroup entity.  A ParameterGroup is a 
collection of related Parameter entity data.  An Input ParameterGroup entity must match its 
Output ParameterGroup entity to provide a valid link or vector. 

Model inputs and outputs are fully defined before their use in a scenario by authors who 
will register their models into the IFT-DSS system.  Subsequently, authors can then link these 
models into scenarios.  The ability of users to add models and scenarios via a GUI is outside the 
scope of the IFT-DSS POC system but will be included in later versions.  The IFT-DSS POC 
will have no method or GUI interface for users to view or edit the Scenario Database.  Scenarios 
in the POC will be created, loaded, and managed by the database administrator.   

The Navigator tool will query this database and use the results to control the interactive 
processing of scenario runs and editing of run data.  The Executive will query this database for 
scenario data and compile this data to control processing.  Once completed, the Executive will 
store performance information in the database. 
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Figure 4-4.  Conceptual ERD for the Scenario Database. 

The Navigator will query this database and use the results to control the interactive 
processing of runs and editing of data.  The Executive will query this database for ALL of its 
data related to the specified scenario.  The Executive will compile a segment of these data and 
cause processing to be done.  Once completed, the Executive will update the use counters and 
performance tracking data. 

Many behaviors related to this data set, e.g., the ability for users to add models and create 
scenarios, will be added to later versions of IFT-DSS. 
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Machines 

In order for the Executive to decide how the execution of a model should be distributed 
across available machines to maximize performance, the Scenario Database has tables (see the 
conceptual ERD in Figure 4-5) describing how well each machine can execute each model 
(Performance entity).  The bandwidth capacity between machines (Bandwidth entity) is also used 
in this calculation. 

 

Figure 4-5.  Conceptual ERD for subset of the Scenario Database to facilitate 
efficient model execution. 

Templates 

To maintain control over the Navigator’s GUI format, the Scenario Database includes 
entities to map the vectors, parameter groups, and their parameters in a scenario DAG to UI 
templates (see Figure 4-6).  These templates are HTML documents with placeholders for 
parameter inputs.  This arrangement makes it possible to have customized GUIs for certain 
scenarios.  For example, given a model that takes in winds, moistures, and weather parameter 
groups, we may have a scenario where all three of those parameter groups appear to the user on a 
single screen. 
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Figure 4-6.  Conceptual ERD of user interface HTML templates. 
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The Navigator  is denoted by the letter G in Figure 4-1. 

 

4.1.7 Navigator 

The Navigator is a web application 
that will have two key functions:  (1) it will 
enable users to visualize and explore their 
data in the form of an interactive map, and 
(2) it will allow users to edit data values.  
The tool will function as a data input 
mechanism (as discussed in Section 3) for 
user-generated modeling scenario runs.  
Users will be presented with features that 
allow them to zoom in and out, pan in 
different directions, switch between layers 
and overlays, print maps, and save map 
images.   

In addition, users will have the option to click on a point in the map or draw a polygon to 
view attribute data for that point or polygon area.  Users will also have the ability to edit attribute 
data associated with the GIS map layers. 

As shown in Figure 4-7, the interactive Navigator tool will consist of four key 
subcomponents:  (1) a set of underlying GIS map layers, (2) a set of software system instructions 
that tell the Navigator how to construct the map requested, (3) a map server software component 
that builds the map, and (4) a subcomponent to add interactive features. 

 

Figure 4-7.  Subcomponents of the Navigator. 

The data source provides the underlying GIS map layers (i.e., political boundaries, relief, 
land marks, etc.) for the base map.  The map server software will support several data input 
formats for vector and raster data.  For raster data, Tiff/GeoTif and EPPL7 are supported by 
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The Project and Planning Database is denoted by the 
letter H in Figure 4-1. 

 

default, but other formats such as GRASS, Jpeg2000, and ArcInfo Grids are supported with the 
help of the Geospatial Data Abstraction Library (GDAL).  In the case of vector data, ESRI 
shapefiles are the default; however, the software will be compiled to support and read from the 
Geodatabase, GML files, delimited text files, and more with the vector data access portion of the 
GDAL library (called OGR). 

A set of instructions, in the form of a mapfile, will tell the map server software 
component where the data source is located and will define how the map should be drawn and 
displayed.  The mapfile is where the map layers and the style of the map are specified.  The map 
server will be a software component that constructs a map image given a data source and a set of 
instructions.  It can be implemented as a Web Map Server, generating maps in response to Web 
Map Service (WMS) requests.  The interactive features of the map will be provided by a 
software subcomponent.  This subcomponent allows maps to be displayed in a web browser with 
no server-side dependencies.  It also implements industry-standard methods for geographic data 
access, such as the OpenGIS Consortium’s WMS and Web Feature Service (WFS) protocols. 

4.1.8 Project and Planning Database 

The Project and Planning Database will 
store administrative data about fuels treatment 
projects.  The primary entities are the User and 
the Project.  Users can author models, 
scenarios, and projects.  Users establish 
permissions for authored projects to control 
access by other users to their projects and the 
reports they have generated.  Users can act as 
planners and use projects they have access 
rights to.  A conceptual ERD modeling these 
relationships is shown in Figure 4-8. 
 

This database will support the Planner web application described in Section 4.1.9.  
Projects can be accessed by one or more planners.  Projects are created by one or more authors, 
as are the models and scenarios that make up a project.  Project authorships are used for 
managing three kinds of permissions:  Project Owner (can do anything), Contributor (fewer 
privileges than an owner), and Read-Only (can view a project’s details but not make changes to 
it).   

A project will also need to reference data in the spatial data system.  For example, a 
project has its area of interest (e.g., Yellowstone National Park).  The properties of this area (e.g., 
elevation, slope, etc.) are stored entirely in the spatial data system, but a project will have to 
reference this area uniquely so that its properties can be retrieved from the spatial data system.  
See Section 3 for a description of the user experience that corresponds to this database. 
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The Planner Web Application is denoted by the letter I in 
Figure 4-1. 

 

 

 

Figure 4-8.  Conceptual ERD for Project and Planning Database. 

4.1.9 Planner Web Application 

The Planner web application manages 
activities in the IFT-DSS POC, which will 
include creating a new project or run, loading 
an existing project or run, sharing a project, 
and various project management tasks.  

Once the user has created a project by 
defining the run scenario and the area of 
interest, he or she can launch the Navigator, 
which presents dynamically generated screens, 
tabbed navigation, and a scenario graph.  The 
user can then execute runs through the 
scenario. 

After completing the scenario the user can view results, generate reports, and share the 
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project with other users.  A more detailed description of the user experience is presented in 
Section 3. 

Report Generation 

When a project reaches a certain point, planners will be ready to compile a report for the 
project.  In the case of a Prescribed Fire Plan report, there exists a Word document template.  
IFT-DSS POC will have the ability to generate a partially filled-out Word document for this 
template.  Some of the sections of the Prescribed Fire Plan report are blocks of free-form text.  
The Project and Planning Database will retain this text so that planners can enter the text while 
logged on to the IFT-DSS and save it for later sessions and ultimately for report generation. 

Some of the sections of these reports contain values produced or consumed by certain 
models (e.g., flame length).  Those values, stored in the spatial data system, will be retrieved at 
report generation time.  Users can capture tables, map and graph snapshots for their reports by 
using the Navigator.  For the specific case of a Prescribed Fire Plan report, users will choose to 
associate such outputs with a report so that the generated Word document will include these 
snapshots. 

4.2 INTERFACES 

This section describes the communication among the principal components of the SOA.  
The interfaces, numbered as in Figure 4-1, are (1) Model Data Exchange, (2) Model Control, (3) 
Sequencer Control and Monitoring, (4) Executive Scenario Polling and Feedback, (5) Executive 
Launching and Progress Reporting, (6) Map and Data Presentation Interface, and (7) Web Page 
Generator and Database Interface.  The interfaces can also be listed as follows: 

1. Data Sequencer  ↔ Model Adaptors 

2. Executive  ↔ Model Adaptors 

3. Executive  ↔ Data Sequencer 

4. Executive  ↔ Scenario Database 

5. Executive   ↔ Navigator 

6. Navigator    ↔ Geodatabase 

7. Navigator or Planner ↔ Scenario or Project and Planning Databases 

The remainder of this section describes the high-level communications protocols for each 
interface, including a description of each message that passes between components. 
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The Model Data Exchange Interface is denoted by 
the number 1 in Figure 4-1. 

 

 

4.2.1 Model Data Exchange Interface 

The model data exchange 
interface provides a means of 
communications between models and 
with the Data Sequencer.  The 
exchange of data among models is 
fundamental to the service-oriented 
model execution and is at the heart of 
the system.  Upon initiation, each 
model forms peer-to-peer connections 
with the other models (or the Data 
Sequencer) that supply or depend on 
its inputs and outputs.  These 
connections use a simple, efficient 
protocol.   

The data are relayed in small packets.  Each packet contains a single instance of each 
member of a “ParameterGroup” from the Scenario Database (see Figure 4-11).  Each packet will 
also contain a locator index unique to the model run, as well as a single data object.  All of the 
objects passed through a given channel will be of the same type.   

Output sockets will buffer data for a reasonable period before the remote receiver begins 
or resumes receiving data.  No data will be retransmitted.  Packets may be received (and must be 
processed) in any order.  The packet’s run locator index uniquely identifies the data spatially 
and/or temporally.  The packet data may contain additional identifying (coordinate) values.  It is 
a logic error for an input channel to receive multiple packets with the same index unless they 
contain identical data.  Race conditions may otherwise result.  The effect of these race conditions 
is not specified. 
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The Model Control Interface is denoted by the 
number 2 in Figure 4-1. 
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4.2.2 Model Control Interface 

The model control interface 
allows communications between the 
Executive and the model adaptors.  The 
Executive and the model adaptors 
communicate to enable connecting a 
scenario’s models and to execute the 
scenario, or a portion of the scenario.  
This protocol is simple in terms of data 
transmission.  It could be implemented as 
a simple remote procedure call (RPC) or 
could use HTTP.  The content of this 
exchange is, however, vital to the 
performance of the system.  

Once a scenario is compiled by the Executive, the Executive sends startup messages to 
the models involved in the scenario.  Each startup message signals a model to begin listening for 
incoming data and provides the connection point information required by the model adaptors for 
hooking up the plumbing between adjacent models in the scenario. A connection between two 
models is actually between specific input and output streams of the two models, each stream 
communicating a different data set to or from its model.  Moreover, each stream may have 
multiple connections.  When a model completes execution, it notifies the Executive and sends 
along performance metrics that the Executive will relay to the Scenario Database and use to 
compile future work.  These messages between the Executive and the Model Adapters are shown 
in Table 4-8. 



 
 

 4-29

The Sequencer Control and Monitoring Interface 
is denoted by the number 3 in Figure 4-1. 

 

 

Table 4-8.  Messages between the Executive and Model Adaptors. 

Messages from Executive to Model Adaptors 
 
RunModel (inputs, outputs) – invokes the model. 
Parameters: 
inputs  – list of input model stream connection info 
              per each input: 
                 stream ID, IP addresses and port numbers, phase 
outputs – output model stream connection info: 
             stream ID, IP addresses and port numbers, phase, 
    multiplexing polynomial 

Returns: status message 
 
GetProgress – requests progress report 
Returns: progress message 
 
Messages from Model Adaptors to Executive 
 
NotifyComplete (runstats) – reports runtime performance measurements. 
Parameters: 
runStats – runtime performance metric for this model on this network node 

4.2.3 Sequencer Control and Monitoring Interface 

The sequencer control and 
monitoring interface allows 
communications between the Executive 
and the Data Sequencer.  The interactions 
between the Data Sequencer and the 
models (included in Section 4.2.1) are 
complex and critical to the operation of 
the system.  The compiler process and 
execution of the scenarios are realized by 
the conversation between the Executive 
and the Data Sequencer.  The protocol 
that enables this conversation is 
described in Table 4-9, separated into 
execution messages and compiler 
messages. 



 
 

 4-30

Table 4-9.  Messages between the Executive and Data Sequencer. 

Messages from Executive to Data Sequencer 
 
Startup – gets Data Sequencer ready to receive messages. 
Returns: status message 
 

--- SCENARIO EXECUTION MESSAGES --- 
 
EmitLayerRegion (maskID, layerID, connections, MPs) – tells Data Sequencer to send the part or 
all of a map layer that is to a set of streams, supplying each stream with its “fan-out”  
Parameters: 
maskID      – the ID of the mask that specifies the region of the layer 
layerID     – the ID of the layer 
connections – list of IP addresses and port numbers to emit to 
MPs         – list of multiplexing polynomials, one per connection 
Returns: status message 
 
ListenForResultLayer (maskID, layerID, connections, MPs) – tells Data Sequencer to send the part 
or all of a map layer to a set of streams, supplying each stream with its “fan-out”  
Parameters: 
maskID      – the ID of the mask to apply to result 
layerID     – the ID of the layer in which to store the result 
connections – list of IP addresses and port numbers to listen from 
Returns: status message 
 

--- COMPILER MESSAGES --- 
 
ApplyAperture (aperture, maskID) – tells Data Sequencer to mark, in the specified mask, the cells 
that surround the already-marked cells, which are necessary to accommodate the specified 
aperture. 
Parameters: 
aperture – the dimensions involved in the map layer and their windows of 
           interest  
maskID   – the ID of the mask to modify 
Returns: status message 
 
MakeMask (input layer, output layer) – tells Data Sequencer to calculate and store in the GDB a 
mask raster that specifies which cells in some data input layer are older than the same cells in 
the corresponding data output layer. 
Parameters: 
input layer  – data map input layer 
output layer – data map output layer 
Returns: the ID of the generated mask 
 
JoinMasks (maskIDs) – creates a new mask that is a combination of the specified masks. 
Parameters: 
maskIDs – the IDs of the masks to join 
Returns: the ID of the generated combination mask. 
 
GetMaskSize (maskID) – queries for number of marked cells in the specified mask. 
Parameters: 
maskID – the ID of the mask to query 
Returns: the number of marked cells 
 
DeleteMask (maskID) – removes the specified mask from the GDB. 
Parameters: 
maskID – the ID of the mask to delete 
 
Messages from Data Sequencer to Executive  
 
GetProgress – requests progress report 

Returns: progress message 
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The Executive Scenario Polling and Feedback 
Interface is denoted by the number 4 in Figure 4-1. 

 

The Executive Launching and Progress Reporting 
Interface is denoted by the number 5 in Figure 4-1. 

 

 

4.2.4 Executive Scenario Polling and Feedback Interface 

The Executive scenario and polling 
interface allows communications between 
the Executive and the Scenario Database.  
When a user selects the output of a model 
in the Navigator, the Executive will be told 
the scenario in question and the model’s 
output that was selected.  Subsequently, the 
Executive will query the Scenario Database 
(DB) for the data it needs to create a DAG 
of the scenario (a node list and an edge 
list).   
 
 

The Executive will also query the scenario DB for information about machines that are 
available to execute the necessary models for the given scenario.  With that information, the 
Executive will compile an optimal execution plan for the appropriate scenario segment and then 
initiate execution.  After execution of the segment is complete, the Executive reports statistics 
back to the scenario DB about how well machines executed models in order to improve 
performance for future runs.  

The protocol across this interface will be SQL over the wire (e.g. JDBC).  Because the 
Executive will have to use recursion, it is more appropriate to get a simple and complete node 
and edge list of the graph from the DB (using SQL, a mostly declarative language) and have the 
Executive do the rest of the work in a procedural, imperative language (e.g., C++ or Java). 

4.2.5 Executive Launching and Progress Reporting Interface 

The Executive launching and 
progress reporting interface allows 
communications between the Executive and 
the Navigator.  Some user actions in the 
Navigator will cause the Executive to run 
and receive progress feedback indicated by 
the arrow numbered (5) in Figure 4 1.  This 
is triggered by a message from the Navigator 
that causes the Executive to execute a 
scenario segment.  This process consists of 
the Navigator sending an RPC to the 
appropriate machine to launch the Executive.   
 

This RPC will also pass the scenario ID and the point in the overall process where 
processing is needed.  Next, the Executive will compile the proper scenario segment.  Once 
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The Map and Data Presentation Interface is 
denoted by the number 6 in Figure 4-1. 

 

execution begins, the Executive will periodically report progress updates to the Navigator for 
GUI presentation.  In the case of a long execution, the Executive will notify the Navigator so the 
user knows he or she may log off and receive notification (e.g., via email) when execution has 
reached completion. 

The mechanism for communication between the web application server and the user’s 
web browser may be the Persistent Communications Pattern for Asynchronous JavaScript and 
XML (AJAX). 

4.2.6 Map and Data Presentation Interface 

The map data presentation interface 
allows communications between the 
Navigator and the Geodatabase.  Since a 
WMS-compliant geodata server is used, the 
content of this interface is WMS.  WMS is a 
standard communications protocol for map 
servers.  It allows for use of data from 
several different servers, effectively creating 
a network of map servers from which clients 
can build customized maps. 
 

WMS servers interact with their 
clients by using the HTTP protocol.  The WMS specification defines certain request types, and 
for each of those requests defines a set of query parameters and associated behaviors.  A WMS-
compliant server must be able to handle at least two types of requests, GetCapabilities and 
GetMap.  A GetCapabilities request returns an XML document containing metadata about the 
map server.  A GetMap request returns an image of a map based on the input information.  
Support exists for other requests such as GetFeatureInfo, DescribeLayer, and GetLegendGraphic.  
A GetFeatureInfo request returns information about features at a query location.  This specific 
request type is used to get data when a user clicks on the map.  The DescribeLayer request 
returns an XML description of one or more map layers.  Lastly, the GetLegendGraphic request 
type returns a legend image (icon) for the requested layer including labels. 

The data editor program (calibration tool) will request maps or other graphical data from 
the GDB.  The GDB will act on that request and deliver a map (image) or other data.  A fairly 
high bandwidth connection is needed because multiple users may be requesting maps nearly 
simultaneously.  Importantly, when the user edits the map or enters data, the results are passed 
into the GDB. 

In addition to communicating map layer data, this interface must support the 
communication of non-spatial data and a significant amount of system control.  When a new run 
is defined, information is sent to the GDB about the run’s inputs so that, if these data sets do not 
already exist, the GDB can generate images with default data or information extracted from 
another source. 
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The Web Page Generator and Database Interface is 
denoted by the number 7 in Figure 4-1. 

 

 

4.2.7 Web Page Generator and Database Interface 

The Web Page Generator and 
Database Interface governs 
communications between the 
application components (Navigator 
and Planner) and the relational 
databases (Scenario and Project and 
Planning).  The Scenario Database 
will store information about each 
scenario.  Each scenario will have 
one or more pages associated with it, 
and each page will have one or more 
inputs (e.g., text fields, radio buttons, 
checkboxes, drop-down selectors, 
maps) associated with it.  The inputs will provide the content for each page, and each page will 
be a step in the scenario workflow. 

The pageCreator will be an object between the Navigator user interface and the Scenario 
database that handles the page generation for a specific scenario.  On the basis of the scenario 
chosen by the user, the pageCreator object will query the Scenario database for pages associated 
with that specific scenario.  For each page, the pageCreator object will query the database for an 
HTML template (controlling screen layout and design) and inputs to be included on the screen.  
This will allow most pages of the Navigator to be dynamically generated and populated from the 
database. 

The design styling of each Navigator screen, including placement of inputs, will be 
controlled by an HTML template.  This template may be stored in the Scenario database and 
associated with a specific scenario/page, enabling customization of individual screens.  The 
template will contain placeholder variables, which will be replaced with appropriate inputs at 
runtime.  This model will allow for generic types of templates to be used in the future.  In 
addition, individual input styles will be controlled by values stored in the database for each input 
(e.g., width, font, minimum/maximum characters, etc.). 

The Project and Planning database stores information about projects, runs, and associated 
scenarios.  The Planner user interface interfaces with the Project and Planning database in a more 
mundane, create-retrieve-update-delete (CRUD) fashion, than how the Navigator interfaces with 
the Scenario database. 

4.3 BEHAVIORS AND INTERACTIONS 

This section presents the principal interactions among components and, in combination, 
the behavior of the system as a whole, in the form of swim lane diagrams.  The swim lane is a 
visual element used in process flow diagrams that depicts what or who is working on a particular 
subset of a process.  The swim lane flowchart differs from other flowcharts in that processes and 
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decisions are grouped visually in lanes. Parallel lines divide the chart into lanes, with one lane 
for each person, group, or subprocess.  Lanes are labeled to show how the chart is organized. 

4.3.1 Project Workflow 

Figure 4-9 illustrates the interaction between the Planner/Navigator, a planner (end user), 
the Executive, and services (model environment, models, and GDB) for an entire project. 
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Figure 4-9.  Overview of run execution. 

4.3.2 Executive Scenario Compilation 

The swim lane diagram in Figure 4-10 depicts the communication between the 
Navigator, Executive, and Scenario DB when a scenario segment needs execution. 
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Figure 4-10.  Swim lane diagram of the Navigator, Executive, and Scenario DB 
interaction. 

4.3.3 Executive Orchestration of Model and Geodatabase Interaction  

Figure 4-11 illustrates the interaction between the Executive, Data Sequencer and GDB, 
and models, beginning with Executive compilation of a scenario segment.  This interaction 
occurs after user action caused the Executive to begin and is essentially a drill down into the 
“Execute Plan” step in the Executive swim lane in Figure 4-10. 
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Figure 4-11.  Swim lane diagram of Executive, Data Sequencer and GDB, and 
models interaction. 

4.3.4 User Interaction with the Graphical User Interface and Database 

Figure 4-12 illustrates the interaction between the user, Navigator, pageCreator object 
(which handles the generation of scenario specific web pages), and the database that holds the 
data necessary to create the web pages. 
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Figure 4-12.  Swim lane diagram of the user, Navigator (GUI), page creator, and 
scenario database interaction. 
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4.3.5 User Interaction with the Web Map Service and the Geodatabase 

Figure 4-13 shows how the User, WMS, and GDB interact with each other. 

 

Figure 4-13.  Swim lane diagram of the user, WMS, and GDB interaction. 
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5. TECHNOLOGIES 

This section discusses specific technology choices for each component in the POC 
system.  Flexibility in meeting the needs of the user communities is paramount to the success of 
the IFT-DSS.  Therefore, the choices that we suggest in this section are not necessarily final.  It 
is intended that this document be a “living document” because the design and the implementation 
technologies may change during development and those changes will be noted in revisions to 
these specifications. 

Given the SOA of the system, technology decisions can be made separately for most 
components.  Moreover, the architecture can accommodate a wide range of platforms and 
network topologies, from all components running on a single machine to a dedicated machine or 
cluster of machines for each component.  Specific technology choices are based on a 
combination of criteria, including quality, ease of use, interoperability, reliability, performance, 
support, and cost.   

We defer specifying network topology and many hardware requirements until we are 
closer to deployment, at which time we will have gained knowledge of optimal configurations.   

5.1 MODELS AND MODEL ADAPTORS 

The models are the components that process the parameter data.  The Model Adaptors are 
the components that enable models to be “plugged in” and that direct parameter data into and out 
of the models.  Models and Model Adaptors are described in sections 4.1.1 and 4.1.2.  Each 
model employed in the system will always run in-process with, and hence on the same box as, a 
Model Adaptor. 

OPERATING SYSTEM:  Windows and Linux  

It is incumbent on the system to accommodate models embedded in pre-existing 
programs that were developed to run on specific OS platforms so both of these platforms must be 
deployed to host the models. 

PROGRAMMING LANGUAGE:  Java, C++ 

Wrapped models (method #2 in section 4.1.2) are in pre-existing executable programs, 
and external models (method #3) are services, so the issue of programming language for these 
two methods is moot.  Subclassed models (method #1 in section 4.1.2) require that a specific 
(object-oriented) programming language or languages be supported.  We intend to support Java 
and C++.  This means that two versions of the model adaptor host program (which make up the 
model parent class) shown on the left side of Figure 4-3 will be developed.  The model adaptor 
host programs for the other two methods will be written in Java. 
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5.2 GEODATABASE 

The primary function of the Geodatabase is to manage and serve the data that are 
generated and used by the models.  Whereas a large fraction of these data are spatially 
distributed, the unique features of a GIS database are needed.  Conversely, a large fraction of 
these data are aspatial.  The data server will thus have to effectively combine the features of a 
GIS database with those of a fast data server, and be able to present both types of data.  The 
Geodatabase is also used to manage and display the spatial data in the form of interactive maps 
as referenced in sections 4.1.3 and 4.1.7.  

OPERATING SYSTEM:  Linux  

There exists a large quantity of open source resources that address similar problems.  We 
also have access to similar tools that are currently in use by members of our user community 
(e.g., WFDSS). Linux is the preferred OS for these resources and tools. 

GIS SOLUTION:  MapServer, OpenLayers 

We are investigating the suitability of MapServer in combination with OpenLayers as 
our GIS data and mapping solution.  MapServer is an open source platform used to publish 
spatial data and interactive mapping applications to the web.  It was chosen because of its many 
features, which include advanced cartographic output, support for popular scripting and 
development environments, cross-platform support, support of numerous Open Geospatial 
Consortium (OGC) standards, availability of a multitude of raster and vector data formats, and 
map projection support.  OpenLayers is a pure JavaScript library used to display map data in web 
browsers, with no server-side dependencies.  

We are also investigating how we might leverage the mapping interface from WFDSS. 

5.3 DATA SEQUENCER AND EXECUTIVE 

These components are the inner “clockworks” of the system.  The Data Sequencer 
interacts with the Geodatabase to emit input data to the models and to store model output data.  
The Data Sequencer also provides data filtering calculation services to the Executive.  The 
Executive is the program that compiles, and triggers execution of “runs”, of scenarios. 

OPERATING SYSTEM  Linux 

PROGRAMMING LANGUAGE  Java 

Linux and Java are both robust, reliable, enterprise-class technologies, and well suited 
for these non-GUI components.  They are both zero-cost.  Java is easier to “use” than C++, and 
Java is cross-platform, which means that Java-based components can easily be re-used for any 
subsequent deployments to other OS platforms. 
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5.4 PLANNING AND SCENARIO DATABASES 

OPERATING SYSTEM  Windows Server 2003 64 bit or higher 

RDBMS  MS SQL Server 2008 64 bit. 

The Planning and Scenario Databases require a relational database management system 
that can scale with future growth.  Four database systems were reviewed: current versions of 
Oracle, SQL Server, MySQL, and PostgreSQL.  For IFT-DSS project success, experience with 
the proposed database is critical.  STI has over 10 years of experience with SQL Server and 
Oracle systems, both operationally at STI in projects such as AIRNow (Anderson et al., 2002) 
and with user site installed systems such as the Data Management System (Gray et al., 2004).  
Microsoft SQL Server 2008 is the most cost-effective solution for both development and 
production systems.  Running SQL Server in a 64-bit environment will allow it to take advantage 
of large memory resources if needed for future system features.  STI has experience with SQL 
Server for both single machine single user projects (SQLExpress) and billion record operational 
databases used in SOA Web service environments. 

5.5 NAVIGATOR AND PLANNER 

These are the user-facing parts of the system; they present a browser-based, interactive 
graphical user interface.  The Navigator and Planner interact with the scenario and planning 
databases to manage projects, work scenarios, and so on.  The Navigator interacts with the 
Geodatabase and the Executive to view, edit, and generate new parameter data. 

OPERATING SYSTEM  Windows Server 2003 

WEB SERVER  Internet Information Server (IIS) 

Windows Server 2003 with IIS is a common environment for hosting web applications.  
STI has extensive and positive experience developing, maintaining, and hosting web applications 
in this environment. 

PROGRAMMING LANGUAGE  PHP, JavaScript, HTML. 

PHP is proposed as the server-side language for the following reasons: 1) PHP has 
become a commonly used and understood language, and this choice will facilitate future 
modifications of the system by various parties; 2) PHP can be run on multiple platforms and web 
servers, which will facilitate deployment on Linux/Apache if necessary; 3) there are no software 
licensing fees; 4) STI has expertise developing software using PHP and is currently building the 
BlueSky Playground application for the USFS using this language. 
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