FIRESEV East: Mapping Severe Fire Potential in the Eastern U.S.

Matthew H. Panunto'’, Brett H. Davis', Gregory K. Dillon', Robert E. Keane!, Donovan S. Birch? and Penelope Morgan# |Universityofldaho

LUSDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT USA
2University of Idaho, Department of Forest, Rangeland, and Fire Sciences, Moscow, ID USA * Corresponding author: mpanunto@fs.fed.us

Integrating
science, lechnology
and fire managemaent,

Wildland Fire Management RD&A

OBJECTIVE THRESHOLDING

& Produce a seamless, wall-to-wall, 30-meter raster geospatial layer
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INPUTS

4 We used 8 mapping regions to stratify statistical modeling.

& Mapping regions Mapping Regions

were based on US
EPA Ecoregions.

0 Raster spatial
data for most
predictors used in
modeling were

MODELING AND MAPPING

& Within each mapping region, we applied the following steps
separately for forest and woodland vs. non-forest settings:

& Draw a spatially-balanced, random sample of 1% of burned
pixels; extract values for all input layers at sample points.

Soredian 0 Develop Random Forest classification tree models with binary
orocessed in 1- severity response (severe vs. not severe).
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o Satellite-derived burn severity observations came from over Honbumasie gneuiure

5,000 fires that burned between 2000 and 2013.
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by MTBS and . Cross-validated classification accuracies for individual models

classified them as
“severe” vs. “not
severe” using a
variety of
techniques.

ranged from 70% to 87% for forest and woodland models, and
69% to 85% for non-forest models.

0 Elevation, 1000-hour fuel moisture, and NDVI were generally in
0 250 500 the top four predictor variables.
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o Burn severity measurement and interpretation are very different in

forest and woodland vs. non-forest settings; therefore, we kept them
separate for

modeling and
mapping.

& We used a forest
mask based on

APPLICATIONS

o Integration into national spatial decision support tools such as
the Wildland Fire Decision Support System (WFDSS)

o Planning for future wildfires — pre-existing product can inform
managers as to whether an ignition may lead to desirable or
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