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ABSTRACT OF DISSERTATION 

SMALL MAMMAL RESPONSES TO FOREST RESTORATION AND FUEL REDUCTION 

Forest restoration and fuel reduction treatments have been recommended for many North 

American forests that have undergone changes in their fire regimes.  I examined how such treatments 

impact small mammal populations.  I further considered potential biases in interpreting historical fire-scar 

data, which have been used to recommend fire return intervals for treatments in modern forest 

management, and I developed improved estimators for parameters of historical fire regimes.  

In Chapter 1, as part of a national experiment, the Fire and Fire Surrogate Program, I evaluated the 

effects of forest thinning on small mammal population densities and total small mammal biomass in 

ponderosa pine-dominated forests at 2 study areas in northern Arizona and northern New Mexico, USA.  I 

also evaluated the effects of wildfire on small mammal population densities after a wildfire burned a 

portion of one study area.  I refined statistical methods to efficiently estimate small mammal population 

densities and to model the impacts of disturbance on densities; these methods involve estimation of 

abundance and effective trapping area in combined analyses across space and time followed by a weighted 

regression analysis of treatment effects.  I hypothesized that habitat changes post-disturbance would be the 

largest determinant of population responses to thinning and wildfire within 1 year of disturbances.  This 

hypothesis was largely supported, as predicted positive responses to thinning were documented for deer 

mice (Peromyscus maniculatus), gray-collared chipmunks (Tamias cinereicollis), and least chipmunks (T. 

minimus).  Predicted positive responses to wildfire were also observed for deer mice, while predicted 

negative responses to wildfire were not supported for chipmunks.  Total biomass of small mammal 

populations generally increased following both thinning and wildfire.  I argue that my statistical methods, 

combined with rigorous attention to experimental design, provide a template for similar experimental 

investigations. 

In Chapter 2, I examined changes in small mammal habitat and densities of 4 small mammal 

species, including deer mice, gray-collared chipmunks, golden-mantled ground squirrels (Spermophilus 
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lateralis), and Mexican woodrats (Neotoma mexicana), 2-3 years after variable-intensity thinning and 

prescribed fire treatments in ponderosa pine forests of northern Arizona, USA.  These treatments were 

designed to simultaneously reduce high-severity fire risk while returning forests to conditions more 

representative of pre-European settlement structure and function.  Treatments resulted in increased 

herbaceous vegetation and decreased woody debris, 2 important components of small mammal habitat in 

these forests.  Small mammal populations varied strongly across years during the course of the study.  

Small mammal densities were influenced by both treatments and identified habitat variables.  Deer mouse 

densities were negatively related to tree densities.  Gray-collared chipmunks were negatively related to tree 

densities, positively related to woody debris, and negatively related to treatment.  Golden-mantled ground 

squirrels did not appear to vary strongly with treatment or treatment-related habitat changes.  Mexican 

woodrats were positively, but weakly, related to woody debris.  Overall, forest thinning can be expected to 

increase densities of small mammals in these forests, and retention of slash in fuel reduction/restoration 

treatments may further positively influence small mammal densities in the post-treatment community.  

However, reduction of woody debris with frequent prescribed fire entries may reduce small mammal 

densities.  Further work is necessary to better understand links between herbaceous vegetation and small 

mammal populations in southwestern ponderosa pine forests, as well as population dynamics and habitat 

needs of less common species such golden-mantled ground squirrels and Mexican woodrats.             

In Chapter 3, I examined general patterns of small mammal responses to mechanical thinning, 

prescribed fire, and mechanical thinning/prescribed fire combination treatments at 8 different study areas 

across the United States as a part of the Fire and Fire Surrogate Program.  Research questions included 1) 

do treatments differ in their impact on small mammal densities and biomass, and 2) are effects of 

treatments consistent across study areas?  I modeled taxa-specific densities and total small mammal 

biomass as functions of treatment types and study area effects, and ranked models based on an information-

theoretic model selection criterion.  Small mammal taxa examined, including deer mice, yellow-pine 

chipmunks (T. amoenus), and golden mantled ground squirrels, as well as all Peromyscus and Tamias 

species, had top-ranked models with responses varying both by treatment type and study area.  However, 

the top-ranked model of total small mammal biomass was a model with biomass varying only with 

treatment, not by treatment type or study area.  Individual species and taxa appear to have variable 
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responses to fuel reduction treatment types in different areas; however, total small mammal biomass 

appears to generally increase after any type of fuel reduction.  These results highlight the variability in 

taxa-specific responses to treatments and suggest the importance of adaptive management policies and 

careful site-specific analyses when applying fuel reduction treatments.    

In Chapter 4, I describe an analogy between models designed to estimate occupancy of sites by 

animal species and the estimation of fire size and mean fire return interval.  Information on characteristics 

of historical fire regimes in ponderosa pine forests is increasingly being used to understand ecological 

function and to set management guidelines for these forests.   Better methods for estimating parameters of 

historical fire regimes from fire-scarred samples are needed.  I provide estimators for both size and return 

interval of fire when detection probabilities of fires are < 1.  The sampling method involved requires 

identification of sites that are geographically closed to fire and the sampling of fire-scar recorder trees 

within those sites.  Simulations suggest that at least 3 recorder trees per site would be necessary to obtain 

relatively unbiased and precise estimates of parameters.  I introduce model assumptions, sampling 

considerations and ideas for advanced applications of this approach.  The model described exists in a 

likelihood framework, thus facilitating information-theoretic model selection and inference.      

Sarah J. Converse 
Department of Fishery and Wildlife Biology 
Colorado State University 
Fort Collins, CO 80523 
Spring 2005 
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CHAPTER 1: 

SMALL MAMMAL RESPONSES TO THINNING AND WILDFIRE IN  

PONDEROSA PINE-DOMINATED FORESTS OF THE SOUTHWESTERN USA 

 

INTRODUCTION 

Recently, researchers have focused substantial effort on investigating changes in fire regimes and 

stand structure of ponderosa pine-dominated forests of the southwestern USA (Cooper 1960, Covington 

and Moore 1994, Moore et al. 1999, Fulé et al. 2001, Allen et al. 2002).  These forests apparently 

experienced frequent fires (2-20 year return interval; Moore et al. 1999) of low to moderate severity in the 

recent past resulting in a park-like appearance with mature trees interspersed in forest openings.  However, 

since European settlement of the region, fire suppression, grazing, and logging are thought to have resulted 

in levels of tree densities and forest fuels outside the historic range of variability, thereby increasing the 

potential for high-severity wildfires (Cooper 1960, Savage and Swetnam 1990, Covington and Moore 1994, 

Arno et al. 1995).  To reduce this potential, managers are interested in the development and application of 

treatments, including mechanical thinning and prescribed fire, designed to remove excess fuels while 

moving these forests toward historical structural conditions and disturbance intervals (e.g., Covington et al. 

1997, Moore et al. 1999, Lynch et al. 2000).  Such fuel reduction treatments have recently been officially 

sanctioned on USA federal lands through the 2003 Healthy Forests Restoration Act.   

Information allowing better prediction of the potential effects of fuel reduction treatments is 

needed to guide management decisions such as type, timing, extent, area, and location of treatments.  To 

provide such information, the national Fire and Fire Surrogate (FFS) Program was conceived as a 

cooperative effort among federal land-management agencies, universities, and private organizations to 

investigate the relative impacts of fire and fire surrogate treatments (i.e., mechanical thinning) on forest 

ecology and fire risk in forests throughout the USA that evolved with short-interval, low- to moderate-

severity fire regimes (P. Weatherspoon and J. McIver, US Forest Service, unpublished report).  The FFS 
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experimental approach applies a similar study design and sampling scheme to 13 study areas across the 

country, including 2 study areas in ponderosa pine-dominated forests of Arizona and New Mexico.  

Through the FFS Program, researchers are monitoring treatment effects on several ecological response 

variables in the general areas of wildlife, vegetation, fuels and fire behavior, soils, entomology, and 

pathology. 

Compared to forests treated with fuel reduction techniques, untreated forests appear to be at higher 

risk for severe wildfire (Fulé et al. 2001, Martinson and Omi 2002, Pollet and Omi 2002).  Therefore, 

understanding how effects of fuel reduction treatments differ from the effects of severe wildfires, which 

may occur more commonly in the absence of fuel reduction treatments, should also help to guide 

management decisions.  Responses to prescribed fire and thinning can generally be examined 

experimentally; however, studying wildfire is limited to quasi-experimental approaches, and data on pre-

wildfire conditions are rarely available.   

Within the wildlife component of the FFS Program, small mammal populations have been 

identified as a response variable of interest.  Small mammal communities comprise an important 

component of the vertebrate biomass and biodiversity of forests, and likely have a substantial role in 

shaping forest successional patterns through seed consumption and dispersal and hypogeous fungi dispersal 

(Tevis 1956, Gashwiler 1970, Maser et al. 1978, Price and Jenkins 1986).  Small mammals also are 

important as food sources for predatory species of management concern in southwestern forests, including 

northern goshawks (Accipiter gentilis; Reynolds et al. 1996, Long and Smith 2000) and Mexican spotted 

owls (Strix occidentalis lucida; Ward and Block 1995, Sureda and Morrison 1998). 

Little reliable information is available regarding small mammal responses to forest thinning, 

prescribed fire, or wildfire; such information is sorely needed to understand the effects of treatments on 

populations (Whelan 1995).  Three major flaws in the existing literature include reliance on abundance 

indices, non-optimal sampling methods such as kill-trapping, and lack of pre-disturbance data.  The 

majority of the extant work employs indices of abundance as response variables (e.g., Tester 1965, Bock 

and Bock 1983, Masters et al. 1998, Steventon et al. 1998, Wilson and Carey 2000, Carey 2001).  Inference 

from abundance indices rests on the problematic assumption that the probability of detecting animals is 

constant across space and time (Nichols 1992, Anderson 2001).  When comparing across areas that have 
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been differentially influenced by a habitat disturbance, this assumption seems unrealistic because changes 

in habitat likely influence animals’ behavior and thus capture probabilities (Block et al. 2001).  

Additionally, some investigators have relied on indices from small mammal kill-trapping (e.g., Ahlgren 

1966, Krefting and Ahlgren 1974, Martell 1984, Kirkland et al. 1996, Ford et al. 1999, Suzuki and Hayes 

2003), which may reduce the power of investigations to detect effects because the investigation itself is a 

mortality factor that may influence local population dynamics.  Finally, lack of pre-disturbance information 

degrades the utility of much existing research.  In studies of wildfire, information on pre-fire populations is 

generally unavailable, and investigators rely on comparisons to nearby unburned areas (e.g., Krefting and 

Ahlgren 1974, Martell 1984, Kirkland et al. 1996, Kyle and Block 2000).  However, even in the case of 

planned forest disturbances, investigators have frequently failed to gather pre-prescribed fire (e.g., Ahlgren 

1966, Bock and Bock 1983), or pre-thinning (e.g., Monthey and Soutiere 1985, Steventon et al. 1998) data.    

This work began as an investigation of small mammal responses to thinning treatments in 

southwestern ponderosa pine-dominated forests, conducted within the FFS Program at the Southwest 

Plateau study area in northern Arizona, and at the Jemez Mountains study area in northern New Mexico.  In 

addition to these treatments, a high-severity wildfire, the Lakes Fire, burned through a portion of the Jemez 

Mountains study area in 2002 after 2 years of small mammal data had been gathered, allowing me the rare 

opportunity to assess small mammal responses to wildfire in ponderosa-pine dominated forests through 

examination of pre- and post-fire populations.  I evaluated short-term responses (6 months to 1 year post-

disturbance) to forest thinning and wildfire.  These responses were evaluated through changes in population 

densities of dominant species and changes in total small mammal community biomass.  In addition to an 

examination of treatment responses, I also evaluated the challenges and opportunities associated with large-

scale habitat experiments in the context of this work.   

Responses of small mammal populations to wildfire and thinning can be considered to occur in 2 

stages.  The first stage is proximal mortality caused by the disturbance itself.  Wildfire will most likely be a 

greater proximal source of small mammal mortality from burns or suffocation (Tevis 1956, Chew et al. 

1959) compared to thinning, although thinning operations, if large and intense enough, probably result in 

some immediate mortality or emigration by small mammals.   
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The second stage of post-disturbance response is a demographic response to altered habitat 

conditions after treatment, either through changes in survival, fecundity, or migration, or combinations 

thereof.  The second stage of response spans a gradient across short-term to long-term changes in habitat 

conditions.  The impact of disturbance on vegetation communities is expected to be highly dynamic over 

time (e.g., Oswald and Covington 1983, Oswald and Covington 1984), and thus the time period included in 

post-disturbance sampling will determine the measurable responses.  I examined responses from 6 months 

to 1 year post-disturbance, which I characterize as short-term.  Because I sampled small mammals in late 

summer, these responses were measured after 1 growing season post-disturbance.   

Thinning and wildfire are expected to differ in their short-term, i.e., 1-2 growing seasons post-

disturbance, impact on the structural characteristics of small mammal habitat.  Critical components of small 

mammal habitat in forests include the herbaceous layer, which provides a source of food through both 

vegetation and seeds (Ahlgren 1966, Goodwin and Hungerford 1979, Kyle and Block 2000, Wilson and 

Carey 2000), coarse woody debris, which provides nesting cover, travel cover, and insect and fungal food 

sources (Hayes and Cross 1987, Graves et al. 1988, Loeb 1999, Bowman et al. 2000, Carey and Harrington 

2001), and the overstory canopy, which influences the density of the herbaceous layer (Clary 1975, Moore 

and Deiter 1992), and provides food through seed production (Gashwiler 1970, Gashwiler 1979, Carey and 

Johnson 1995).     

In general, a negative relationship exists between herbaceous density and tree density (Clary 1975, 

Moore and Deiter 1992, Sullivan et al. 2001), and thinning increases herbaceous cover by 1-2 growing 

seasons after treatment (Clary 1975, Covington et al. 1997), presumably due to increased light and/or 

nutrient availability.  Thinning method and treatment of slash will influence the coarse woody debris 

available immediately after thinning, depending on whether slash is removed, lopped and scattered, or 

piled.  If slash contains pine cones, it may increase the short-term availability of seeds to forest floor small 

mammals. 

Immediately after fire, the biomass of the herbaceous layer (e.g., grasses, forbs, seedlings) will 

generally be reduced due to proximal mortality from the fire.  However, in the first few growing seasons 

after fire, a recovery of this component to greater than pre-fire levels can be expected, based on data on 

prescribed fire (Bock and Bock 1983, Harris and Covington 1983, Oswald and Covington 1983, Oswald 
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and Covington 1984).  Fire intensity will impact the level and type of herbaceous recovery.  Armour et al. 

(1984) found similar forb cover among unburned, low-intensity burned, and high-intensity burned sites, but 

lower grass cover on high intensity burned sites, apparently due to smoldering of the litter layer and 

resultant mortality of grass rhizomes.  Soil seed sources may also be impacted differentially by variable-

severity fire – if soil seed sources are destroyed by the wildfire, forbs with wind-dispersed seeds, rather 

than grasses, may be prominent in the short-term post-fire community (Harris and Covington 1983).  Fire 

also leads to short-term declines in coarse woody debris (Covington and Sackett 1984, Arno et al. 1995, 

Chapter 2), although, again, the extent of the reduction is probably variable and dependent on fire intensity.  

Reduction in the overstory also is highly dependent on fire conditions and partially dependent on pre-fire 

stand conditions.  Griffis et al. (2001) documented substantially higher tree mortality after wildfire in 

unthinned stands versus after prescribed fire in thinned stands.                      

Different effects on habitat are likely to result in different responses of the small mammal 

communities in affected areas.  I hypothesized that habitat needs, rather than proximal mortality due to 

disturbance, would be the driving force behind changes in densities 6 months to 1 year post-disturbance.  I 

then predicted demographic responses based on information on habitat needs for the dominant species 

found on the study areas.   

I predicted that deer mice (Peromyscus maniculatus) in ponderosa pine-dominated forests would 

exhibit positive short-term responses to thinning.  Deer mice are early seral-stage generalists known to 

benefit from disturbances of many kinds (Fitzgerald et al. 1994).  They are highly omnivorous, with a diet 

composed primarily of seeds, but also including insects and herbaceous material.  I expected thinning to 

increase the availability of food sources in 3 possible ways: first through increased availability of 

herbaceous vegetation and associated seeds, second through increased availability of herbivorous insects, 

and third, through increased availability of pine seeds readily harvested from slash piles.  In addition, I also 

expected that the presence of slash would provide generous amounts of cover.  Deer mice have been 

positively linked with both coarse woody debris cover and herbaceous and/or shrub cover (Goodwin and 

Hungerford 1979, Carey and Johnson 1995, Kyle and Block 2000, Carey and Harrington 2001, Carey and 

Wilson 2001, Manning and Edge 2004).  
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For similar reasons, I also predicted that chipmunk species, including gray-collared (Tamias 

cinereicollis) and least (T. minimus) chipmunks would exhibit positive short-term responses to thinning.  

Chipmunks are omnivorous, primarily feeding on herbaceous material and seeds (Hilton and Best 1993, 

Fitzgerald et al 1994).  They are associated with forest openings and use logs and stumps for feeding, 

observation, and nesting cover.  I expected that thinning would immediately increase the availability of 

both openings and logs and stumps and would also increase food availability, as discussed for deer mice.       

I predicted positive responses of deer mice to wildfire.  In the short-term, I expected that wildfire 

would increase important food sources for deer mice through increased seed availability from early-

colonizing forbs or forbs released from competition, and/or increased availability of seeds in the soil seed 

bank once forest floor litter was reduced by fire (Ahlgren 1966).  Though coarse woody debris should 

decline after fire, I expected that increases in food sources would compensate for this loss.  Ream’s (1981) 

review of small mammal-fire associations suggested positive responses to fire by deer mice.                   

Conversely, I predicted that chipmunks in ponderosa pine-dominated forests would respond 

negatively to wildfire.  While wildfire may increase seed availability, herbaceous vegetation plays a 

relatively large role in chipmunk diets (Hilton and Best 1993, Fitzgerald et al. 1994), and I expected 

herbaceous vegetation to be less available after wildfire than before.  Also, in the short-term wildfire will 

tend to reduce the availability of coarse woody debris, and I predicted that this reduction would influence 

responses by chipmunks to wildfire.  Ream’s (1981) review suggested that chipmunks would more likely 

respond positively to fire if rock, shrub, or woody cover remained.    

STUDY AREA 

The study area design was established by the FFS Program national study proposal (P. 

Weatherspoon and J. McIver, US Forest Service, unpublished report).  The 2 southwestern study areas in 

the FFS Program were each comprised of 3 study sites.  Study sites were further divided into 4 

experimental units, each assigned to a treatment type (thin, prescribed burn, thin/prescribed burn 

combination, control).  Treatments were not assigned to the study sites randomly, but were assigned 

primarily by convenience, i.e., both thin and thin/prescribed burn treatments next to each other, similarly 

for burn and thin/prescribed burn.  Because prescribed burning was not completed on the southwestern 

study areas within the time frame of this research, only the thinning portion of the FFS Program study 
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design is examined here.  Sampling within the experimental units was keyed to a permanent grid system of 

36 points placed 50 m apart, generally in a 6 x 6 array, but sometimes in an oblong or non-rectangular 

array.  The total area of each sampling grid was approximately 6.25 ha.  A 50-m buffer surrounded the 

sampling grid, e.g., total size of the treated areas was approximately 12.25 ha.  Table 1.1 provides a 

summary of the assignment of experimental units to treatments under the original FFS design and under 

this study.     

The Southwest Plateau study area (SPSA) was located on the Coconino and Kaibab National 

Forests west of Flagstaff, Arizona, between 2,100 and 2,300 m elevation.  It was composed of 1 study site, 

SP-A, located on the Kaibab National Forest (35°N, 112°W), and 2 study sites, SP-B and SP-C, located 

approximately 25 km east of SP-A and < 5 km from each other on the Coconino National Forest (35°N, 

111°W), and.  At all 3 SPSA study sites, experimental units were arranged in a 2 x 2 square block, with 

experimental units adjacent within the blocks.  Ponderosa pine was the sole tree species throughout the 3 

study sites, with the exception of a few (less than 20% of basal area; J. Bailey, Northern Arizona 

University, unpublished data) Gambel oak (Quercus gambelii) and alligator juniper (Juniperus deppeana) 

at SP-A.  Common understory plants included (J. Bailey, Northern Arizona University, unpublished data) 

yarrow (Achillea millefolium), pine dropseed (Blepharoneuron tricholepis), sedges (Carex spp)., Wheeler’s 

thistle (Cirsium wheeleri), trailing fleabane (Erigeron flagellaris), Arizona fescue (Festuca arizonica), 

Wright’s deervetch (Lotus wrightii), and squirreltail (Sytanion hystrix), though drought conditions in the 

southwest USA at the time of the study likely resulted in relatively low herbaceous cover.  The SP-A site 

had a few low rocky ridges, but otherwise the sites lacked substantial topographic relief.  All of the SPSA 

study sites had been pre-commercial thinned during the previous 30 years, with at least 2 prior entries of 

thinning.   

The Jemez Mountains study area (JMSA) was located entirely on the Santa Fe National Forest 

west of Los Alamos, New Mexico (35°N, 106°W), at elevations ranging from 2,400 to 2,600 m.  Data 

presented here were gathered at 2 study sites, JM-B and JM-C.  Data from the third study site (JM-A) were 

not included in this analysis because no treatments were completed there.  Both the JM-B and JM-C study 

sites were dominated by ponderosa pine, with lesser amounts of southwestern white pine (Pinus 

strobiformis), Douglas-fir (Pseudotsuga menziesii), Gambel oak, and aspen (Populus tremuloides).  
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Common understory shrubs (J. Bailey, Northern Arizona University, unpublished data) included Wood’s 

rose (Rosa woodsii), kinnikinnick (Arctostaphylos uva-ursi), and Oregon grape (Berberis repens).  

Common herbaceous plants included yarrow (Achillea millefolium), Kaibab pussytoes (Antennaria 

rosulata), sedges (Carex spp.), Arizona fescue (Festuca arizonica), muttongrass (Poa fendleriana), and 

squirreltail (Sitanion hystrix).  Both the JM-B and JM-C sites included hills and rocky ridges.  Information 

on management history was not available for the study sites, but the stands had undergone logging in the 

past.  At the JM-B site, 2 experimental units were located adjacently and were < 1 km from the 2 other 

experimental units, which were located adjacently.  At the JM-C site, the experimental units were arranged 

in a string along the northern edge of a mesa top.  The JM-B and JM-C sites were separated by 

approximately 12 km.                  

METHODS 

Small Mammal Trapping 

Two different levels of small mammal capture effort were used in this study.  The sampling grid in 

each experimental unit provided the basic structure for small mammal trapping grids.  The FFS national 

protocol called for trapping at 50-m intervals, keyed to the permanent sampling grid points (S. Zack, 

Wildlife Conservation Society, and B. Laudenslayer, US Forest Service, unpublished report).  In 2000 at 

the SPSA, each trapping grid consisted of 1 large (7.6 x 8.9 x 22.9 cm) Sherman folding live-trap at every 

grid point, and 1 extra-large (10.2 x 11.4 x 38.1 cm) Sherman folding live-trap at every other grid point.  

The same design was then carried out in 2001 at both the SPSA and JMSA, except that a pilot study to 

evaluate the utility of an expanded trapping effort was made on 2 of the experimental units at the SPSA.  

The expanded effort consisted of placing trap lines between the grid points, thus decreasing trap spacing to 

25 m.  Large Sherman live-traps were placed at these points for a total of 121 large traps (compared to 36 

in the original design) and extra-large Sherman live-traps were placed at the original grid points for a total 

of 36 traps (compared to 18 in the original design).  Converse et al. (2004) evaluated the expanded trapping 

effort and concluded that it resulted in increased capture probabilities and sample sizes.  Thus, the 

expanded trapping effort was applied to both study areas in subsequent years.   

Small mammal trapping was conducted annually from 2000-2003 at the SPSA and from 2001-

2003 at the JMSA.  Trapping occurred in July and August during 2 consecutive 5-day sessions at each 
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study area.  Half the experimental units at each study site, randomly assigned, were trapped in the first 

session and the other half in the second session.  Traps were positioned along small mammal trails, at the 

openings of burrow holes, and/or in proximity to downed woody debris.  A wood shingle was used to shade 

and insulate traps.  Polyester filling was placed at the back of each trap for insulation along with 

approximately 20 mL of a bait mixture of rolled oats and chicken feed.  A small amount of bait was also 

trailed into the entrance of each trap.  Traps were checked during both morning and afternoon to yield 10 

trapping occasions on each unit each year.  During trapping, the following data were recorded for each 

animal: trap location and size, species, new or recapture, individual identity, age class, sex, mass, 

reproductive condition, and release condition.  Animals were individually identified with 2 unique ear tags. 

Treatments 

 On both study areas, thinning treatments were designed to simultaneously retain the largest trees 

and create clumps of trees separated by larger, semi-open spaces.  This is thought to more closely simulate 

historical conditions in these forests (Covington et al. 1997).  On the SPSA, 2 experimental units at both the 

SP-B and SP-C sites were thinned during the fall of 2002 with piling of slash completed in the spring of 

2003.  Thinning began on 2 experimental units at the SP-A site in the fall of 2002 but was not completed 

until the spring of 2003.  At the SP-A site, trees were felled primarily with a feller-buncher and slash was 

piled.  At the SP-B and SP-C sites, trees were hand-felled and slash was piled after short-distance skidding; 

slash piles were slightly smaller and more numerous at the SP-B and SP-C sites than at the SP-A site.  

Slash was left after the treatments and was still in the units during small mammal trapping in 2003.  At the 

JMSA, 1 experimental unit at the SP-B site was thinned in the spring of 2003.  Though some piles existed, 

slash was generally not piled but was left scattered on the ground and was still in the unit during the 

trapping season of 2003.  Thinning was not completed at the remaining unit slated for thinning at the SP-B 

site because of logistical difficulties.  Disturbance of the soil after thinning was more severe at the JMSA 

than at the SPSA, presumably due to the thinning methods used and the greater topographic relief at the 

JMSA.   

 The Lakes Fire (approximately 1,700 ha total) burned through the entire JM-C site at the JMSA in 

late August 2002.  Tree mortality was nearly complete throughout the majority of the 4 experimental units.  

Needles and small branches were consumed on a majority of the trees, and ground cover was almost 
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completely consumed except in some small clearings, leaving bare soil throughout the site.  The burned 

slope to the north of the JM-C site was treated by the US Forest Service with aerial seeding on 11-12 

October 2002, with the goal of reducing post-fire erosion.  Seeded grasses, including mountain brome 

(Bromus marginatus; 30% of mix), slender wheatgrass (Elymus trachycaulus; 30%), annual rye grass 

(Lolium multiflorum; 30%), and barley (Hordeum vulgare; 10%), were applied at a nominal density of 

approximately 25 kg/ha.  While aerial seeding was not intended for the JM-C experimental units, due to the 

presence of seeded grasses in June 2004 it was apparent that some seeds had blown into the north portion of 

the experimental units.    

Data Analysis 

The analysis of responses to thinning and wildfire occurred in 4 steps.  First, I estimated 

abundances for each species each year in each experimental unit, based on the mark-recapture data.  

Second, I estimated effective trapping area for each species each year in each unit through models of mean 

maximum distance moved.  Third, I calculated species-specific densities, total small mammal biomass, and 

variance-covariance matrices for densities and biomass in each unit each year.  Finally, I conducted 

weighted least-squares regression analyses to examine the effects of habitat disturbances on densities of the 

most common small mammal species at each study area and on total biomass at each study area.  

Throughout the analysis, I employed an information-theoretic philosophy of model selection and 

multi-model inference (Burnham and Anderson 2002).  Model selection was based on Akaike’s 

Information Criterion (AIC; Akaike 1973) with a small sample correction (AICc; Hurvich and Tsai 1989) 

and model-averaging was based on Akaike weights (Burnham and Anderson 2002).  At each step in the 

analysis, I specified statistical model sets a priori, to strengthen inference and lessen the risk of identifying 

spurious effects (Anderson et al. 2001).  

Abundance Estimation.—Abundance estimates for each unit in each year were obtained through 

the Huggins conditional likelihood approach (Huggins 1989, 1991).  The Huggins approach allows for the 

modeling of individual heterogeneity, behavioral responses to capture, and time effects on capture 

probabilities (Model Mtbh; Otis et al. 1978).  The Huggins conditional likelihood generates estimates of 

initial capture (pi, i = 1, …, t) and recapture rates (ci, i = 2, …, t) for t occasions based on animal encounter 
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histories and uses these rates to generate estimates of abundance with a Horvitz-Thompson type estimator, 

as  
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where 1+tM  is the number of unique individuals marked on a grid during t trapping occasions, i.e., the 

minimum known population size, and pt is the estimate of initial capture rate for occasion t.  One benefit of 

the Huggins approach is the ability to use individual-specific covariates to model heterogeneity in capture 

probabilities (Huggins 1991, Pollock 2002, White 2002).  An additional benefit over the full closed-capture 

likelihood of Otis et al. (1978) is the improved numerical properties of the Huggins estimator in some 

cases; for these data, the full likelihood models sometimes would generate abundance estimates equal to 

1+tM with an estimated variance of 0.      

I used age class as an individual covariate to account for heterogeneity in capture rates.  I 

classified animals as either adults or subadults based primarily on mass, and secondarily on external 

evidence of reproductive status if there was uncertainty in mass measurements (McCravy and Rose 1992).  

I used a combination of field observations and information available in the literature (Hilton and Best 1993, 

Fitzgerald et al. 1994) to define typical minimum masses of adult animals.  Deer mice and brush mice 

(Peromyscus boylii) were defined as adult when ≥14 g, long-tailed voles (Microtus longicaudus) when ≥30 

g, least chipmunks when ≥35 g, gray-collared chipmunks and cliff chipmunks (Tamias dorsalis) when ≥50 

g, Mexican woodrats (Neotoma mexicana) when ≥100 g, and golden-mantled ground squirrels 

(Spermophilus lateralis) when ≥150 g.   

Estimation of abundance was conducted in Program MARK 3.2 (White and Burnham 1999).  

Experimental units in each year of the study were treated as groups in the analysis, and thus abundance 

estimates were obtained for each unit in each year, i.e., I combined data across experimental units and years 

to obtain abundance estimates for each experimental unit in each year and I used auxiliary variables to 

model differences in detection probabilities across experimental units and years (Bowden et al. 2003).  This 

approach is useful because of its increased efficiency, especially when small sample sizes occur at the scale 

where abundance estimates are desired.   



 

 12

I proposed a priori models to describe capture probabilities and estimate abundance.  I included a 

time of day effect (a.m. versus p.m. trap check) and a behavioral response to capture in all models, because 

observations during data collection indicated that these were clearly important factors.  The only exception 

to this was long-tailed voles at the JMSA, where a behavior effect was not estimable and thus was deleted 

from all models.  At both study areas, I included age of individual, either year or session within year, and 

either unit or site as effects in the models.  For the SPSA analyses, I also included trapping effort (low 

effort = 50 m trap spacing, high effort = 25 m trap spacing) and treatment (thinning).  For the JMSA 

analysis, I also included treatment (thinning or wildfire), but trap effort was not considered in the JMSA 

analysis because trap effort was nested within year.  I included all possible combinations of the effects for a 

total of 72 abundance estimation models in both the SPSA and JMSA analyses.   

Abundance estimation was conducted for all marked species, but in the cases of species with small 

sample sizes, many models were not included because effects were not estimable or were poorly estimable 

(e.g., Mexican woodrats were never caught at the JM-C site on the JMSA, therefore a wildfire effect was 

not estimable).  To determine estimability, abundance estimates were examined for each model and models 

were deleted if estimates were nonsensical, e.g., estimates on the order of thousands or more individuals.  

Such abundance estimates can be expected with the Huggins conditional likelihood approach when very 

small detection probabilities occur in the denominator of equation (1), as may occur with inestimable 

effects in the models (Pollock 2002).   

I model-averaged the abundance estimates and variance-covariance matrices to account for model 

selection uncertainty.  I used AICc for model selection, computed model-averaged estimates based on 

Burnham and Anderson (2002), and model-averaged variance-covariance matrices based on Burnham and 

Anderson (2004). 

Effective Trapping Area.—Estimation of abundance via mark-recapture methods from a trapping 

grid results in an estimate that pertains to an unknown total area.  Because density is of more interest as a 

response variable than abundance, I used mean maximum distance moved (MMDM) to estimate the areas 

to which abundance estimates applied (Wilson and Anderson 1985).  I calculated the maximum distance 

moved between any 2 traps for each marked animal with ≥2 captures in a unit in one year.  I specified 

multiple ANOVA (PROC GLM; SAS Institute 2003) models to estimate MMDM.  For the analyses at both 
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study areas, I proposed candidate models with MMDM varying by year, unit, site, or a constant model.  For 

the SPSA analysis, I additionally considered treatment (thinning) and trapping effort.  For the JMSA 

analysis, I also considered treatment (thinning or wildfire).  Thus, I examined 6 models in the analyses at 

each study area.  Only single-variable models and a smaller model set, as compared to the abundance 

estimation procedure, was considered because less information is available in the capture-recapture data on 

movement than on capture probability.  This is because each animal contributes at most one piece of 

information to the estimation of MMDM, whereas each animal contributes information to estimation of 

capture probabilities equal to the number of capture occasions in which an animal is at risk of capture.   

For each model, I added a buffer strip, with a width of one-half the model-averaged MMDM, to 

the area of each trapping grid to estimate the effective trapping area (Otis et al. 1978, Wilson and Anderson 

1985).  The variance of effective trapping area for each model was calculated by a delta-method 

transformation of the variance of MMDM (Wilson and Anderson 1985).  Covariances across the effective 

trapping area estimates were calculated based on the correlation matrix of the estimates, e.g., for model 

MMDM{year} the covariance across experimental units within a year was computed as 

)var(*)var(),cov( jtitjtit EEEE = ,                                                    (2)  

where var( itE ) is the variance of the effective trapping area estimate in unit i in year t and var( jtE ) is the 

variance of the effective trapping area estimate in unit j in year t, because corr( itE , jtE ) = 1.  Then, for 

model MMDM{year}, correlations, and therefore covariances, in estimates between years would be 0.  I 

then model-averaged the estimates and variance-covariance matrices of effective trapping area from each 

model to obtain model-averaged estimates and variances-covariance matrices, based on the computed AICc 

for each ANOVA model (Burnham and Anderson 2002).   

Densities, Biomass, and Variance-Covariance Matrices.— Species-specific densities were 

calculated in each unit each year as the abundance divided by the effective trapping area.  For the analysis 

of total biomass, I used the minimum adult mass, in grams, as a multiplier to convert density estimates to 

biomass estimates, and then summed the total estimated mass over all marked species at each study area.  

Variance-covariance matrices of the density estimates and total biomass estimates were necessary for the 

weighted regression analysis.  These matrices were computed by delta method transformations of the 
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model-averaged variance-covariance matrices of the abundance estimates provided by Program MARK and 

the model-averaged variance-covariance matrices of effective trapping area (Seber 2002).   

Weighted analysis cannot be conducted with variances of 0 because the variance-covariance 

matrix is singular.  Variances of 0 occurred in the abundance variance-covariance matrix for a species when 

no animals of that species were caught on a given experimental unit in a given year.  In order to provide 

positive variances in these cases, I fit a linear regression (PROC REG; SAS Institute 2003) of the natural 

log of positive variances against their corresponding density estimates and determined the regression 

intercept (Franklin 1997).  The exponential of the regression intercept then served as the variance for the 0 

density estimates.  This method was used for the most common species at each study area, analyzed singly, 

as well as for the less common species, which were not analyzed singly, before they were included in the 

analysis of total biomass.  The only exception was the long-tailed vole, which was only caught on 1 

experimental unit in 1 year, thus making a regression impossible.       

Analysis of Treatment Effects.—The analysis of treatment effects was conducted under a 

weighted least-squares regression framework (Draper and Smith 1998).  A traditional (i.e., unweighted) 

regression analysis was inappropriate because of the non-0 sampling covariances between the abundance 

estimates, which were induced by the abundance and effective trapping area estimation procedures.   

I specified multiple a priori models describing predicted responses of densities to treatments.  I 

used site, year, and treatments as factors in the models.  While abundance and effective trapping area were 

estimated at a unit scale each year (because trapping was conducted at a unit scale), I did not model 

treatment effects at a unit scale.  Treating units as replicates would represent pseudo-replication (Hurlbert 

1984) because thinning treatments were carried out essentially as one operation at each study site, and 

because the wildfire also represented a single “treatment”.   In the SPSA data analysis, thinning was treated 

as 3 factors by nesting thinning within the 3 study sites.  Thinning was treated in this way because 

important interaction effects were evident after an initial set of model runs with thinning treated as a 

common effect across all sites and interactions included between site and thinning.  To keep the model set 

balanced, thus allowing the calculation of valid relative importance values (described below), this initial set 

of models was revised to provide for estimation of thinning effects differently at each study site.  In the 

JMSA analysis, there were 2 treatments, thinning and wildfire, and interactions were not considered 
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because treatments were naturally nested within sites.  I ran all combinations of the variables, for a total of 

8 models in the SPSA analysis and 16 models in the JMSA analysis.   

A vector of effect sizes ( iβ̂ ) was estimated, and a variance-covariance matrix of the effects ( iΣ̂ ) 

was computed for each model (i) in the weighted analyses.  Computation of iβ̂  and iΣ̂  follow from Draper 

and Smith (1998) as  

YVXXVX iiii
1`11` )(β̂ −−−=                                                            (3) 

and                                   

              211` σ̂)(ˆ iiii XVX −−=Σ                                                                 (4) 

where iX  is the design matrix of model i, V  is the variance-covariance matrix of the model-averaged 

density estimates, Y  is the vector of model-averaged density estimates, and 2σ̂ i  is estimated from the 

residual sum of squares of the model, divided by the appropriate degrees of freedom, resulting in an 

unbiased estimator,  

 
)(

)β̂()β̂(
σ̂

1`
2

i

iiii
i Kn

XYVXY
−

−−
=

−
.                                                      (5)  

where n is the sample size of Y estimates and Ki is the number of parameters in model i plus 1 for the 

estimation of 2σ̂ i . 

Integral to estimating AIC for model i is the recognition that the joint likelihood function for iβ  

and 2σ i  is given by 
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into the right side of equation (6) results in a £ log  function proportional to  
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and AIC is computed, as in Burnham and Anderson (2002), as           

iii Kn 2σ̂logAIC 2 += .                                                               (9)                 

The small sample correction of AIC (AICc; Hurvich and Tsai 1989) was then computed for each model.  

All calculations were carried out in PROC IML (SAS Institute 2003).  Based on the computed AICc for 

each model, information-theoretic model selection and multi-model inferential methods were employed 

(Burnham and Anderson 2002).  These included model-averaged effect sizes and standard errors, as well as 

relative importance values, calculated by summing the Akaike weights across all models in which a given 

variable appears (Burnham and Anderson 2002).  Recent work has indicated that a relative importance 

value, based on Akaike weights, of ≥ 0.40 suggests that a variable is having an effect on the process of 

interest (G. C. White, Colorado State University, unpublished data).        

RESULTS 

  Two species were caught most commonly at each study area, with all other species contributing 

less than 25 total individuals per study area (Table 1.2, 1.3).  At the SPSA, deer mice (Figure 1.1) and gray-

collared chipmunks (Figure 1.2) were the dominant species.  Estimated deer mouse densities ranged from 0 

(SE = 0) to 8.5 (SE = 1.6) individuals/ha, and gray-collared chipmunk densities ranged from 0 (SE = 0) to 

3.3 (SE = 0.4) individuals/ha.  Total small mammal biomass at the SPSA also included Mexican woodrats, 

golden-mantled ground squirrels, and cliff chipmunks (Figure 1.3).  At the JMSA, deer mice (Figure 1.4) 

and least chipmunks (Figure 1.5) were the dominant species.  Estimated deer mouse densities ranged from 

0.4 (SE = 0.2) to 9.6 (SE = 0.9) individuals/ha, and least chipmunk densities ranged from 0 (SE = 0) to 1.9 

(SE = 0.7) individuals/ha.  Total small mammal biomass also included long-tailed voles, Mexican 

woodrats, and golden-mantled ground squirrels (Figure 1.6).  Small mammal community composition 

appeared to be generally stable before and after treatments, with the exception of the appearance of long-

tailed voles after thinning on unit G on the JMSA (Table 1.3).  At both study areas, some Peromyscus 

captures were brush mice (P. boylii) rather than deer mice, but these individuals were combined with deer 

mice before analysis was conducted because numbers were low and because of the difficulty in 

distinguishing the species, at least in the younger age classes; all Peromyscus are referred to as deer mice 

throughout this report.  Two adult brush mice were captured on the SPSA, 1 at the SP-A site in 2001 and 1 

at the SP-A site in 2002; 5 were captured at the JMSA, all of them at the JM-C site in 2001.  Field crews 
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captured, but did not mark, an additional 3 small mammal species at the SPSA, including rock squirrels 

(Spermophilus variegatus), Mexican voles (M. mexicanus), and Abert’s squirrels (Sciurus abertii).  At the 

JMSA, additional species captured, but not marked, included rock squirrels, dwarf shrews (Sorex nanus), 

and mountain cottontails (Sylvilagus nuttallii).  Species that were not marked were treated as such because 

they were captured only incidentally and, in the case of Mexican voles, were protected species.  

There existed evidence that disturbance (thinning or wildfire) impacted both capture probabilities 

and movements of animals (Appendix 1A).  Top ranked models of capture probabilities included a thinning 

effect for gray-collared chipmunks at the SPSA and for least chipmunks at the JMSA, and a wildfire effect 

appeared in the top ranked capture probabilities model for deer mice at the JMSA.  Based on results from 

these top models, thinning had a positive impact on capture probabilities of both gray-collared chipmunks 

(effect size = 1.23, SE = 0.47) and least chipmunks (effect size = 1.56, SE = 0.33), while wildfire had a 

negative impact on capture probabilities of deer mice (effect size = -0.86, SE = 0.20).  The top model of 

mean maximum distance moved by gray-collared chipmunks at the SPSA included a thinning effect in 

which MMDM was larger in thinned than in unthinned experimental units (unthinned MMDM = 96.30, SE 

= 4.41; thinned MMDM = 122.62, SE = 12.74).   

 Predicted positive responses of deer mice to thinning were supported everywhere but the SP-B 

study site on the SPSA.  The top-ranked weighted regression model included only the thinning effect; this 

model carried 65% of the total model weight (Table 1.4).  Thinning had a high relative importance value 

(0.76), i.e., thinning was associated with models that carried 76% of the total weight.  The thinning effect 

was positive at both the SP-A and SP-C sites, but the effect was negative at the SP-B site, although in all 

cases the 95% confidence intervals on the model-averaged estimates included 0 (Table 1.5).  At the JMSA, 

the top-ranked model, with 59% of the total weight, included year, thinning, and wildfire effects (Table 

1.6).  The relative importance value of the positive thinning effect was 0.89, and the 95% confidence 

interval did not include 0 (Table 1.7).   

Deer mice also exhibited predicted positive responses to wildfire.  At the JMSA, as noted above, 

the top-ranked regression model for deer mice included year, thinning, and wildfire effects (Table 1.6).  

The relative importance value of the positive wildfire effect was 0.77, with a 95% confidence interval that 

only marginally included 0 (Table 1.7).   
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Predicted positive responses of gray-collared and least chipmunks to thinning were also largely 

supported.  At the SPSA, the top-ranked model for gray-collared chipmunks had a weight of 95% and 

included site and thinning effects (Table 1.8).  The relative importance value of thinning was high (1.00; 

Table 1.9).  Very few gray-collared chipmunks were ever captured at the SP-A study site, and the estimate 

of the thinning effect there was nearly 0.  Elsewhere, exhibiting a similar pattern as for the deer mouse 

analysis, the estimate of the thinning effect at the SP-C site was positive while the estimate at the SP-B site 

was negative, though only at the SP-C site did the 95% confidence interval exclude 0 (Table 1.9).  For least 

chipmunks at the JMSA, the top-ranked model had a weight of 47% and included site and thinning effects 

(Table 1.10).  The relative importance value of the positive thinning effect was 0.96 and the 95% 

confidence interval did not include 0 (Table 1.11).   

The predicted negative response by least chipmunks to wildfire was not supported.  The top-

ranked model for least chipmunks at the JMSA did not include a wildfire effect (Table 1.10), the relative 

importance value of the wildfire effect was 0.19, and the effect estimate was nearly 0 (Table 1.11).        

 Total biomass generally increased as a result of thinning at the SPSA, where the top model 

included site and thinning effects (Table 1.12) and had a model weight of 73%.  The relative importance 

value of thinning (0.92) was high, and the effect was positive at the SP-A and SP-C study sites and negative 

at the SP-B site, but only the SP-C estimate had a 95% confidence interval that did not include 0 (Table 

1.13).  At the JMSA, the top-ranked biomass model included a wildfire effect, with a weight of 28% (Table 

1.14).  The top-ranked model including a thinning effect had a weight of 11%.  The estimated effect of the 

wildfire was positive and the relative importance value was 0.56; the relative importance value for the 

positive thinning effect was a low 0.23 (Table 1.15).  In both cases the 95% confidence intervals included 

0.           

DISCUSSION 

Experimental Design and Inference  

Difficulties in conducting and monitoring large-scale habitat manipulations include problems with 

relevance of the spatial and temporal scale of treatment and monitoring, classical experimental design 

issues such as randomization and replication, and the appropriateness of the response variables monitored 

(Smith 1999, Block et al. 2001).  I confronted many of these issues with regard to the design and 
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implementation of this study, including experimental units that were smaller than desired, a temporal scale 

that was shorter than desired, non-randomization of treatments, lack of replication, and the use of density, 

rather than an underlying demographic rate, as the response variable.  Difficulties with the wildlife 

investigations in the FFS Program were predictable because the wildlife portion of the study was overlaid 

on a design targeted to monitor vegetative and fuel responses to treatments (Block et al. 2001), and 

selection of the size and location of study blocks and assignment and administration of the treatments was 

not controlled by wildlife investigators.  Additional constraints were a function, as commonly occurs, of 

budgetary limitations.  Clearly more information on ecological effects of fire management and fuel 

reduction is needed.  However, I believe my results are relatively robust predictions of short-term small 

mammal density responses to thinning and wildfire in southwestern ponderosa pine forests.       

The size of the thinned areas at the SPSA was 2 experimental units combined for a total treated 

area of approximately 24 ha, while at the JMSA the single thinned experimental unit represented 

approximately half this area.  Although the sizes of the treatments studied here represent an improvement 

over experimental treatments that have been criticized for being overly small (e.g., see Smith’s (1999) 

analysis of Von Trebra et al. (1998)), concern may justifiably exist about the applicability of this research 

to larger-scale management actions.  If treated areas are small relative to areas used by small mammals, 

small mammal responses may qualitatively differ from responses to larger-scale treatments.  This may 

occur if animals respond not to the treatments themselves, but to the habitat edges induced by the 

treatments.  However, the capture-recapture data from this study indicate that animals were responding to 

the treatments, because animals appeared to be using areas that were generally smaller than the treated 

areas.  If large numbers of animals appeared in more than one experimental unit in a given year at study 

sites where experimental units were directly adjacent, i.e., the study sites at the SPSA, this would indicate 

that animals used and responded to larger areas than the experimental units.  Individuals were occasionally 

captured in more than one experimental unit at a given site, but the incidence of this was relatively 

uncommon.  Few individual deer mice (12 of 486 = 2.5%) or gray-collared chipmunks (19 of 304 = 6.3%) 

at the SPSA had encounter histories in >1 experimental unit in a single year.  To more rigorously address 

this issue post hoc, I calculated *p̂ , the mean probability of capture at least once on a given experimental 

unit, given presence, by dividing the total number of capture histories, 1+tM , for a given species by the 
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sum of the abundance estimates for that species.  These rates were 486/1226 = 0.40 for deer mice and 

304/426 = 0.71 for gray-collared chipmunks at the SPSA.  From this, the expected number of animals 

occurring on 2 experimental units in a single year can be calculated as 

2
units 2,1

*)ˆ(
)units 2(ˆ

p

M
N t+= ,                                                            (10) 

where units 2,1+tM  represents the number of individuals captured on 2 experimental units in a single year, 

resulting in expected numbers of 75 deer mice and 38 gray-collared chipmunks.  This indicates that only 

approximately 6.1% of deer mice and 8.9% of chipmunks would be expected to occur on 2 experimental 

units in a given year.  Therefore, it is reasonable to conclude that animals in this study were primarily 

responding to the treatments themselves, at least over the late summer period in which I sampled 

populations.  However, future investigations can further increase the size of experimental units and thereby 

reduce the influence of induced edge by monitoring small mammals before and after thinning or prescribed 

fire treatments planned as part of large-scale forest management actions (Block et al. 2001).   

The temporal scale of investigation, and therefore the scale of inference, are also limited here, and 

continued monitoring of these and other experiments will be necessary to understand long-term responses 

to treatments.  While Sullivan et al. (1999:1382) state that “the major changes to habitat and small 

mammals are likely to occur in the immediate post-treatment period after harvesting,” this is still an open 

question because small mammal results from long-term, continuously monitored experiments of forest 

management systems are not currently available.  Populations may change with time since treatment as 

successional sequences move forests toward conditions similar to pre-treatment conditions, similar to 

historic conditions, or into entirely novel conditions.  Extant examinations of responses at longer time 

scales since disturbance examine only snap-shots of the post-treatment time series (e.g., Wilson and Carey 

2000).   

Because treatments were not randomly assigned to experimental units, but instead were assigned 

based on convenience, the inferences of this research are weakened, and the design is more correctly 

termed quasi-experimental (Block et al. 2001).  While the scope of collected pre-treatment data mitigates 

this problem to some degree, it does not overcome it completely.  Recognizing the importance of 
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randomization in experimental design cannot be overemphasized when planning and executing large-scale 

experiments.   

Another shortcoming of this experiment was that the replication of the disturbances was limited.  

The thinning treatment was replicated 3 times at the SPSA and once again at the JMSA, but the wildfire 

event was not replicated.  The response of deer mice and chipmunks to thinning was consistent, and 

consistent with expectations, across the majority of replicates, but additional replication of thinning 

operations is necessary to understand the consistency in small mammal responses to thinning over larger 

spatial scales and more diverse conditions.  A large-scale analysis of treatment effects across the majority 

of the 13 national FFS study areas is presented in Chapter 3.  Because of the unpredictable nature of 

wildfire, an opportunity to examine changes in pre- and post-wildfire data is rare.  Therefore, though the 

wildfire results presented here do not capture the variability of wildfire responses because of the lack of 

replication, they do represent the only examination, to my knowledge, of pre- and post-wildfire small 

mammal populations in forested habitat.   

While I estimated density responses to treatments, investigations of the mechanisms resulting in 

changes in density would increase understanding of small mammal population dynamics in relation to fuel 

reduction treatments; underlying demographic rates are sometimes a more reliable indicator of habitat 

quality than population density (Van Horne 1983).  Further studies of immigration, survival, and 

reproduction after thinning and fire would elucidate these processes.  For example, it has been suggested 

that immigrants make up a substantial component of post-fire small mammal populations (Tevis 1956, 

Tester 1965), but it is not known to what extent animals may survive fire.  Mark-recapture data collected in 

a design such as the one used here should allow for the estimation of survival and emigration responses to 

treatments under the robust design (Kendall et al. 1995).  However, I was limited in my ability to estimate 

these demographic responses because dominant small mammal species on the study areas had either low 

annual survival rates and so were rarely captured in multiple years (deer mice) or tag loss occurred between 

yearly trapping sessions (chipmunks).  Furthermore, improved marking methods, e.g., passive integrative 

transponders (PIT tags), could reduce mark loss.   

The strength of the approach described here is that it provides a statistically rigorous and efficient 

method for the modeling of changes in population densities across space and time.  Variances on densities 
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are reduced by combining data across trapping grids and years, as compared to estimating densities in 

separate analyses for each grid in each year.  Combining data to estimate abundance in multiple areas has 

been previously described by Bowden et al. (2003); here I add the additional component of time.  This 

approach is both efficient and allows for the removal of the impacts of treatments or other variables of 

interest, e.g., year or site, on detection probabilities and movement of animals.  I provide a method for 

modeling densities that accounts for the sampling covariances induced by the combined analysis, thus 

leading to rigorous estimates of effect sizes and uncertainty.  Further, the emphasis I place on multi-model 

inference increases the robustness of the estimates.  While the methods I used to estimate population 

density may be biased high in some cases (see Parmenter et al. 2003), true densities were of less interest in 

this analysis than density estimates that were unbiased with respect to the variables (thinning, wildfire, 

year, site) included in the weighted regression analysis; such unbiased estimates will lead to unbiased 

estimates of effect sizes.   

In the large majority of publications examining responses of small mammal populations to forest 

management, investigators have relied on indices of abundance (minimum known alive or catch per unit 

effort) to examine responses to treatments.  However, the use of methods for estimating detection 

probabilities are preferable to reliance on the assumption, required in the use of indices, that detection is 

equal across years, sites, treatments, etc.  My results indicate that detection probabilities vary not only 

temporally and spatially, but also with treatments, which is to be expected as habitat conditions change 

post-treatment resulting in changes in behavior and movements of animals.  Thus, treatment effects on 

abundance and detection probabilities are confounded in studies where detection probabilities are not 

estimated.  Relying on indices of abundance may lead to misinterpretations of responses to thinning and 

wildfire.   

Small Mammal Responses to Treatments 

While I generally found support for the positive predicted responses of deer mice and chipmunks 

to thinning, there were inconsistencies in the thinning responses at the SPSA.  These inconsistencies 

occurred at one study site, the SP-B site, where estimated responses to thinning by both deer mice and 

chipmunks were slightly negative.  This site had the largest pre-treatment small mammal populations 
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(Figures 1.1, 1.2, 1.3), indicating that, perhaps, small mammal populations were not as limited by habitat 

conditions before the thinning treatments.   

This result prompts interest in the characteristics of the pre-treatment habitat at SP-B that were 

supporting larger small mammal populations.  The small mammal populations at the SP-A site were 

generally quite small and composed of different species (i.e., small numbers of cliff chipmunks occurred in 

addition to small numbers of gray-collared chipmunks), the SP-A site was relatively far geographically 

from the other 2 sites, and the SP-A site consisted of substantially different habitat, given the presence of 

Gambel’s oak and alligator juniper, so here I focus on comparisons between the SP-B and SP-C sites.  Pre-

treatment total tree basal area was similar at the 2 study sites (BA = 35.6 m2/ha, range = 34.3 – 38.3 at SP-

B, BA = 34.2 m2/ha, range = 24.9 – 43.1 at SP-C), but average tree density was 540 trees/ha (range = 387-

701) at the SP-B site, and 798 trees/ha (range = 611-906) at the SP-C site (J. Bailey, Northern Arizona 

University, unpublished data).  Therefore, the trees at the SP-C site were on average smaller as well as 

more numerous, and indeed, the average percentage of all trees ≤ 40 cm was 88% (range 87% to 92%) at 

SP-B, compared to 98% (range 98% to 99%) at SP-C.  Stands of this type, with small, closely-spaced trees, 

appear to limit populations of deer mice and chipmunks (Hamilton and Cook 1940).  Based on our results, 

thinning of such stands may result in the greatest short-term response in populations of these species.  This 

result highlights the importance of pre-disturbance conditions in determining responses to thinning and 

wildfire.  If habitat is poor for small mammals before disturbance, it appears to be more likely to improve 

after disturbance.  The thinned experimental unit at the JM-B site, where strong positive responses by both 

deer mice and least chipmunks were observed, also had stands that were thick with small trees and had few 

openings prior to treatment.    

Positive responses to thinning have previously been suggested in deer mice (Wilson and Carey 

2000, Carey and Wilson 2001, Suzuki and Hayes 2003).  Immediate increases in deer mouse populations 

after thinning may be due to increases in invertebrate food sources (Ahlgren 1966), herbaceous food and 

cover (Wilson and Carey 2000), conifer seed in slash piles, and coarse woody debris cover (Carey and 

Johnson 1995, Suzuki and Hayes 2003, but see Hadley and Wilson 2004).  The treatment of slash after 

thinning seems to have critical importance for small mammal responses (Goodwin and Hungerford 1979).  

The presence of slash, whether piled (SPSA study area) or scattered (JMSA study area), appeared to 
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provide focal points for small mammal activity in this study.  Slash both harbors insect food sources 

(Ahlgren 1966) and facilitates animal movement and foraging (Hayes and Cross 1987, Graves et al. 1988, 

Loeb 1999).  Further information on demographic processes leading to increased densities after thinning is 

needed.  Increased food sources and/or cover may increase survival rates after thinning; evidence exists that 

survival of deer mice is influenced nonlinearly by herbaceous cover and coarse woody debris (Manning and 

Edge 2004).  Conifer seed abundance also appears to influence both survival and fecundity of deer mice 

(Gashwiler 1979).     

Positive responses of deer mice to prescribed fire and wildfire, including severe wildfire, have 

been documented (Tester 1965, Ahlgren 1966, Krefting and Ahlgren 1974, Bock and Bock 1983, Martell 

1984, Kyle and Block 2000), and these responses appear to be linked to increased food sources, such as 

increases in forb cover even with severe wildfire (Kyle and Block 2000), and an increase in conifer seed 

availability in jack pine (Pinus banksiana) forests, where jack pine cones release seeds in response to 

heating (Krefting and Ahlgren 1974).  The availability of seed food sources may have increased after the 

wildfire in this study if forb or pine seeds in the soil were exposed by a reduction in the litter layer, or if 

some pine seeds survived the fire in the canopy, were released during the fall after the fire, and were more 

easily located by mice during the fall or following spring.  Also, some small unburned or lightly burned 

patches remained in the area of the fire, generally where old logging roads had created small clearings, and 

these areas may have allowed for easy foraging by deer mice.  However, the possibility exists that the 

positive response of deer mice was due partly to the grass seeding operation carried out in October of 2002, 

in which an unknown amount of grass seed intended for the side of the mesa apparently drifted into the 

experimental units.  It is unfortunate that this uncertainty exists, as it is unlikely that many opportunities to 

examine pre- and post- wildfire small mammal populations will occur.  Experimental introductions of grass 

seed after prescribed fire could be used to separate out this confounding.      

Coarse woody debris was almost certainly reduced after the wildfire (Covington and Sackett 1984, 

Arno et al. 1995, Chapter 2) but this did not appear to hamper deer mice in their search for cover, despite 

the strong relationships documented between deer mice abundance and coarse woody debris (Goodwin and 

Hungerford 1979, Graves et al. 1988, Carey and Johnson 1995).  After the wildfire, mice were observed 

using burned-out stumps for hiding and escape cover.  Manning and Edge (2004) found that deer mouse 
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survival in an Oregon mixed-conifer forest was linked non-linearly with coarse woody debris and fern 

cover.  They suggested that the moderate amount of coarse woody debris and fern cover that was linked 

with highest survival rates, as compared to higher levels of woody debris and fern cover, was explainable 

by either reduced predatory efficiency with reduced habitat complexity or reduced competition.     

Least and gray-collared chipmunks generally exhibited positive responses to thinning, as 

predicted.  Strong relationships with understory vegetation (Carey 2000, Carey 2001) and an association 

with coarse woody debris and stumps (Fitzgerald et al. 1994, but see Hadley and Wilson 2004) may have 

spurred this increase.  Positive responses to thinning have been documented for other chipmunk species 

(Carey 2000, Wilson and Carey 2000, Carey 2001, Carey and Wilson 2001, Sullivan et al. 2001, Hadley 

and Wilson 2004).   

For least chipmunks, the increased availability of food sources, either from forb or pine seeds in 

the soil bank or aerially-applied grass seeds, may have offset the effect of the loss of coarse woody debris 

after the wildfire, thus explaining the lack of a negative response by chipmunks to wildfire in this study.  

Such a pattern has been suggested in a study of jack pine (Pinus banksiana) burns for eastern chipmunks 

(Tamias striatus; Krefting and Ahlgren 1974).  This hypothesis has also been suggested by research 

indicating that Townsend’s chipmunks (T. townsendii) are more common in thinned stands with greater 

understory vegetation when compared to legacy retention stands with greater amounts of coarse woody 

debris (Carey 2000).   

The critical determinants of forest floor small mammal biomass appear to be coarse woody debris 

and understory vegetation (Carey and Johnson 1995, Simon et al. 2002).  Vertically and horizontally 

heterogeneous vegetation communities also result in greater richness and abundance of small mammal 

communities (Carey and Harrington 2001).  My results, and others (Monthey and Soutiere 1985, Carey and 

Johnson 1995, Masters et al. 1998, Wilson and Carey 2000, Carey and Wilson 2001, Suzuki and Hayes 

2003) indicate that small mammal biomass appears to respond positively to increased herbaceous 

vegetation and habitat complexity with thinning disturbances in ponderosa pine and other coniferous 

forests, assuming the pre-disturbance habitat is relatively poor, (but see Hadley and Wilson 2004, where 

red-backed voles’ (Clethrionomys gapperi) dominance of the small mammal community resulted in highest 

biomass in less disturbed areas).  In many low-elevation pine forests of western North America, where deer 
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mice and chipmunks are the dominant species in the small mammal community, positive biomass responses 

to thinning may be due to an increase in food availability and coarse woody debris.  A positive, though not 

strong, response to wildfire was documented at the JMSA, though a positive response to thinning was not 

supported there.  However, the variances of the biomass estimates were large and thus model selection 

favored simpler models.  Presumably, increases in biomass in the growing season after wildfire would be 

driven by an increase in food sources, though again, I am not able to separate the effects of natural food 

increases after fire from the potential effects of the aerial seeding operation.        

MANAGEMENT IMPLICATIONS 

 Thinning treatments are currently proposed for wide-scale fuel reduction in many forests 

throughout the United States, especially the western USA.  The 2003 Healthy Forests Restoration Act 

encourages the use of selective thinning for managing wildfire risk and ecological goals.  Therefore, forest 

managers will increasingly find themselves in the position of evaluating the appropriateness of thinning 

treatments on larger areas. 

Generally, total biomass of forest small mammals may be expected to initially increase with 

thinning treatments in ponderosa pine forests, where deer mice and chipmunks are often dominant species, 

at least in forests with relatively poor small mammal habitat prior to treatments.  Typically, these are areas 

that would receive increased management attention because of high fuel loadings – areas with high 

numbers of small trees, few openings, and few larger trees.  However, where deer mouse and chipmunk 

habitat is already fairly good, i.e., in areas with a relatively high number of forest openings and adequate 

coarse woody debris and herbaceous ground cover, thinning treatments may not increase small mammal 

populations.  If there is concern for small mammal populations (for example, in areas managed for raptor 

foraging), management attention should be focused on reducing fuel loadings and opening canopies in 

forest stands with the densest structure, rather than in forests with larger, more widely-spaced trees.  Site-

specific analysis will be critical to making appropriate decisions about treatment application (Brown et al. 

2004).   

The responses of small mammal biomass to the high-severity wildfires that may result from 

passive management, or periodically occur in higher-elevation forests with historically-infrequent fires, are 
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less clear.  Where deer mice are dominant, total small mammal biomass may increase after high-severity 

wildfire.  This may not hold where chipmunks compose a larger portion of the small mammal community. 

Treatment of slash after thinning is an important consideration when designing treatments.  I 

evaluated treatments where slash was left in the treated area and either piled or scattered.  In both cases, 

slash appeared to serve as focal areas of small mammal activity, and slash piles appeared to provide 

abundant small mammal cover.  Therefore, it seems likely that thinning would not increase biomass as 

strongly if slash were immediately removed.   

Management attention may focus on small mammal biomass if concern exists about the food base 

for small mammal predators, such as forest raptors (e.g., goshawks, spotted owls).  In these cases, thinning 

treatments designed to increase small mammal biomass must be balanced against additional habitat needs 

of the predator species of interest, e.g., denser closed-canopy stands to facilitate goshawk fledgling survival 

(Reynolds et al. 1996, Long and Smith 2000).     
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Table 1.1.  Original assignment of experimental units at study sites at the Southwest Plateau study area (SPSA), northern Arizona, and the Jemez Mountains study 
area (JMSA), northern New Mexico, to treatments under the Fire and Fire Surrogate Program (FFS) design, and the treatments examined under this study.  
  
Study Area Site Design Experimental Unit 

   1 2 3 4 

SPSA SP-A FFS Thin Thin/Burn Control Burn 

  This study Thin Thin Control Control 

 SP-B FFS Control Burn Thin Thin/Burn 

  This study Control Control Thin Thin 

 SP-C FFS Control Thin/Burn Thin Burn 

  This study Control Thin Thin Control 

JMSA JM-A FFS Burn Thin/Burn Thin Control 

  This study Excluded Excluded Excluded Excluded 

 JM-B FFS Burn Thin/Burn Thin Control 

  This study Control Control Thin Control 

 JM-C FFS Control Thin Thin/Burn Burn 

  This study Wildfire Wildfire Wildfire Wildfire 
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Table 1.2.  Sample sizes (Mt+1) of individual animals for species captured at the Southwest Plateau study area, northern Arizona, from 2000-2003. 
   

Year Site Mt+1 

  Mexican woodrat Brush mouse Deer mouse Golden-mantled 
ground squirrel 

Gray-collared 
chipmunk 

Cliff chipmunk 

2000 SP-A 1 0 24 0 7 2 

 SP-B 4 0 30 1 82 0 

 SP-C 5 0 45 1 27 0 

2001 SP-A 0 1 14 0 1 3 

 SP-B 2 0 26 2 81 1 

 SP-C 2 0 30 1 16 0 

2002 SP-A 0 1 9 0 0 1 

 SP-B 0 0 69 10 37 0 

 SP-C 0 0 57 0 17 0 

2003 SP-A 0 0 29 1 2 4 

 SP-B 2 0 58 5 9 0 

 SP-C 3 0 95 0 25 0 

 Total 19 2a 486 21 304 11 

aBrush mice were combined with deer mice for analyses. 
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Table 1.3.  Sample sizes (Mt+1) of individual animals for species captured at the Jemez Mountains study area, northern New Mexico, from 2001-2003. 
   

Year Site Mt+1 

  Long-tailed vole Mexican woodrat Brush mouse Deer mouse Golden-mantled 
ground squirrel 

Least chipmunk 

2001 JM-B 0 5 0 44 0 25 

 JM-C 0 0 5 30 7 8 

2002 JM-B 0 7 0 57 0 43 

 JM-C 0 0 0 61 1 30 

2003 JM-B 23 9 0 163 0 31 

 JM-C 0 0 0 204 4 16 

 Total 23 21 5a 559 12 153 

aBrush mice were combined with deer mice for analyses.   
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Table 1.4.  Model selection results from weighted regression analysis of treatment effects on deer mouse densities at the Southwest Plateau study area, northern 
Arizona, 2000-2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K). 
 

Model AICc ∆AICc Weight K 

Density{thin} 8.294 0.000 0.65264 5 

Density{constant} 11.038 2.745 0.16547 2 

Density{site + thin} 12.315 4.021 0.08741 7 

Density{site} 12.989 4.696 0.06238 4 

Density{year + thin} 15.095 6.801 0.02177 8 

Density{year} 17.602 9.308 0.00621 5 

Density{site + year} 19.518 11.225 0.00238 7 

Density{site + year + thin} 20.151 11.857 0.00174 10 
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Table 1.5.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on deer mouse densities at the Southwest Plateau study area, northern Arizona, 2000-2003. 
   

Variable Relative Importance  Level Effect SE 95% CI 

Intercept 1.00000 - 0.270 0.108 (0.059, 0.481) 

Site 0.15391 Difference SP-A, SP-B -0.006 0.033 (-0.071, 0.059) 

  Difference SP-A, SP-C 0.047 0.104 (-0.156, 0.251) 

Year  0.03210 Difference 2000, 2001 0.002 0.010 (-0.018, 0.023) 

  Difference 2000, 2002 -0.004 0.014 (-0.031, 0.024) 

  Difference 2000, 2003 0.004 0.012 (-0.019, 0.028) 

Thin 0.76356 SP-A Thinned 0.241 0.236 (-0.222, 0.704) 

   SP-B Thinned -0.170 0.145 (-0.453, 0.113) 

  SP-C Thinned 1.111 0.859 (-0.572, 2.795) 
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Table 1.6.  Model selection results from weighted regression analysis of treatment effects on deer mouse densities at the Jemez Mountains study area, northern 
New Mexico, 2001-2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K). 
 

Model AICc ∆AICc Weight K 

Density{year + thin + fire} 46.499 0.000 0.58891 6 

Density{site + year + thin + fire} 49.555 3.056 0.12779 7 

Density{site + year + thin} 50.310 3.811 0.08762 6 

Density{year + thin} 50.359 3.860 0.08550 5 

Density{year + fire} 51.922 5.423 0.03912 5 

Density{year} 52.047 5.547 0.03676 4 

Density{site + year} 52.876 6.377 0.02428 5 

Density{site + year + fire} 54.716 8.217 0.00968 6 

Density{thin + fire} 62.666 16.167 0.00018 4 

Density{site + thin + fire} 64.180 17.681 0.00009 5 

Density{fire} 66.575 20.075 0.00003 3 

Density{thin} 67.756 21.256 0.00001 3 

Density{site + fire} 67.845 21.346 0.00001 4 

Density{constant} 68.669 22.170 0.00001 2 

Density{site + thin} 70.570 24.071 0.00000 4 

Density{site} 71.074 24.575 0.00000 3 
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Table 1.7.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on deer mouse densities at the Jemez Mountains study area, northern New Mexico, 2001-2003. 
   

Variable Relative Importance  Level Effect SE 95% CI 

Intercept 1.00000 - 0.775 0.398 (-0.006, 1.555) 

Site 0.24948 Difference JM-B, JM-C 0.128 0.242 (-0.347, 0.602) 

Year 0.99966 Difference 2001, 2002 0.407 0.429 (-0.434, 1.247) 

  Difference 2001, 2003 3.152 0.653 (1.872, 4.431) 

Thin 0.89010 Thinned 3.360 1.681 (0.065, 6.656) 

Fire 0.76581 Wildfire 1.781 1.289 (-0.746, 4.308) 
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Table 1.8.  Model selection results from weighted regression analysis of treatment effects on gray-collared chipmunk densities at the Southwest Plateau study 
area, northern Arizona, 2000-2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K). 
   

Model AICc ∆AICc Weight K 

Density{site + thin} 83.688 0.000 0.95348 7 

Density{site + year + thin} 90.721 7.033 0.02833 10 

Density{thin} 91.841 8.153 0.01618 5 

Density{constant} 97.292 13.604 0.00106 2 

Density{site} 98.952 15.263 0.00046 4 

Density{year + thin} 99.108 15.419 0.00043 8 

Density{year} 104.012 20.324 0.00004 5 

Density{site + year} 105.224 21.536 0.00002 7 
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Table 1.9.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on gray-collared chipmunk densities at the Southwest Plateau study area, northern Arizona, 2000-2003. 
   

Variable Relative Importance Level Effect SE 95% CI 

Intercept 1.00000 - 0.019 0.059 (-0.095, 0.134) 

Site 0.98229 Difference SP-A, SP-B 0.333 0.102 (0.133, 0.533) 

  Difference SP-A, SP-C 0.060 0.067 (-0.071, 0.192) 

Year  0.02881 Difference 2000, 2001 -0.002 0.007 (-0.016, 0.011) 

  Difference 2000, 2002 -0.003 0.007 (-0.017, 0.012) 

  Difference 2000, 2003 -0.005 0.012 (-0.029, 0.018) 

Thin 0.99842 SP-A Thinned -0.014 0.140 (-0.289, 0.261) 

   SP-B Thinned -0.177 0.111 (-0.394, 0.040) 

  SP-C Thinned 0.968 0.237 (0.505, 1.432) 
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Table 1.10.  Model selection results from weighted regression analysis of treatment effects on least chipmunk densities at the Jemez Mountains study area, 
northern New Mexico, 2001-2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K). 
   

Model AICc ∆AICc Weight K 

Density{site + thin} 65.895 0.000 0.47212 4 

Density{thin}  67.988 2.093 0.16581 3 

Density{site + thin + fire} 69.110 3.214 0.09464 5 

Density{year + thin} 69.225 3.329 0.08935 5 

Density{thin + fire} 69.878 3.983 0.06445 4 

Density{site + year + thin} 70.286 4.391 0.05255 6 

Density{site} 72.557 6.661 0.01689 3 

Density{year + thin + fire} 72.630 6.734 0.01628 6 

Density{constant} 73.863 7.968 0.00879 2 

Density{site + year + thin + fire} 74.056 8.161 0.00798 7 

Density{site + fire} 75.441 9.545 0.00399 4 

Density{fire} 75.608 9.713 0.00367 3 

Density{year} 77.062 11.167 0.00178 4 

Density{site + year} 78.194 12.298 0.00101 5 

Density{year + fire} 79.460 13.564 0.00054 5 

Density{site + year + fire} 81.783 15.887 0.00017 6 
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Table 1.11.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on least chipmunk densities at the Jemez Mountains study area, northern New Mexico, 2001-2003.  
  

Variable Relative Importance Level Effect SE 95% CI 

Intercept 1.00000 - 0.275 0.285 (-0.284, 0.833) 

Site 0.64934 Difference JM-B, JM-C -0.194 0.187 (-0.560, 0.172) 

Year 0.16965 Difference 2001, 2002 0.044 0.088 (-0.129, 0.217) 

  Difference 2001, 2003 -0.001 0.042 (-0.083, 0.081) 

Thin 0.96317 Thinned 1.317 0.477 (0.382, 2.253) 

Fire 0.19172 Wildfire -0.021 0.077 (-0.171, 0.130) 
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Table 1.12.  Model selection results from weighted regression analysis of treatment effects on total small mammal biomass at the Southwest Plateau study area, 
northern Arizona, 2000-2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K). 
   

Model AICc ∆AICc Weight K 

Biomass{site + thin} 8.978 0.000 0.72829 7 

Biomass{site + year + thin} 11.650 2.672 0.19149 10 

Biomass{site} 13.621 4.644 0.07144 4 

Biomass{site + year} 17.816 8.838 0.00877 7 

Biomass{constant} 34.457 25.479 0.00000 2 

Biomass{thin} 37.625 28.647 0.00000 5 

Biomass{year} 38.961 29.984 0.00000 5 

Biomass{year + thin} 40.997 32.019 0.00000 8 
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Table 1.13.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on small mammal biomass at the Southwest Plateau study area, northern Arizona, 2000-2003. 
   

Variable Relative Importance Level Effect SE 95% CI 

Intercept 1.00000 - 16.344 11.867 (-6.925, 39.593) 

Site 1.00000 Difference SP-A, SP-B 96.417 15.238 (66.551, 126.283) 

  Difference SP-A, SP-C 39.285 13.906 (12.030, 66.540) 

Year  0.20027 Difference 2000, 2001 -4.737 8.438 (-21.275, 11.801) 

  Difference 2000, 2002 -4.982 8.839 (-22.306, 12.342) 

  Difference 2000, 2003 -6.751 11.787 (-29.854, 16.351) 

Thin 0.91978 SP-A Thinned 6.520 23.913 (-40.349, 53.389) 

   SP-B Thinned -42.308 32.098 (-105.219, 20.604) 

  SP-C Thinned 70.056 30.887 (9.517, 130.595) 
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Table 1.14.  Model selection results from weighted regression analysis of treatment effects on total small mammal biomass at the Jemez Mountains study area, 
northern New Mexico, 2001-2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K). 
   

Model AICc ∆AICc Weight K 

Biomass{fire} -100.831 0.000 0.28327 3 

Biomass{year} -100.125 0.706 0.19899 4 

Biomass{thin + fire} -98.869 1.962 0.10621 4 

Biomass{site + fire} -98.427 2.404 0.08515 4 

Biomass{constant} -98.388 2.443 0.08350 2 

Biomass{year + thin} -97.243 3.588 0.04710 5 

Biomass{site + year} -96.947 3.884 0.04062 5 

Biomass{year + fire} -96.942 3.889 0.04052 5 

Biomass{site} -96.358 4.474 0.03025 3 

Biomass{thin} -95.998 4.833 0.02528 3 

Biomass{site + thin + fire} -95.896 4.935 0.02402 5 

Biomass{site + thin} -94.017 6.814 0.00939 4 

Biomass{year + thin + fire} -93.981 6.851 0.00922 6 

Biomass{site + year + thin} -93.833 6.998 0.00856 6 

Biomass{site + year + fire} -93.347 7.485 0.00671 6 

Biomass{site + year + thin + fire} -89.935 10.897 0.00122 7 
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Table 1.15.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on total small mammal biomass at the Jemez Mountains study area, northern New Mexico, 2001-2003.  
  

Variable Relative Importance Level Effect SE 95% CI 

Intercept 1.00000 - 130.776 98.079 (-61.459, 323.012) 

Site 0.20592 Difference JM-B, JM-C -3.467 31.474 (-65.157, 58.222) 

Year 0.35294 Difference 2001, 2002 -43.312 50.083 (-141.475, 54.852) 

  Difference 2001, 2003 4.519 44.701 (-83.094, 92.132) 

Thin 0.23099 Thinned 59.137 139.482 (-214.248, 332.521) 

Fire 0.55632 Wildfire 66.008 81.983 (-94.679, 226.694) 
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Figure 1.1.  Density estimates and 95% confidence intervals for deer mice at the SP-A study site (units 1-4), the SP-B study site (units 1-4), and the SP-C study site 
(units 1-4) at the Southwest Plateau study area, northern Arizona.  Bars within experimental unit groupings represent years 2000, 2001, 2002, and 2003 from left to 
right.  Black bars represent thinned experimental units.    
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Figure 1.2.  Density estimates and 95% confidence intervals for gray-collared chipmunks at the SP-A study site (units 1-4), the SP-B study site (units 1-4), and the 
SP-C study site (units 1-4) at the Southwest Plateau study area, northern Arizona.  Bars within experimental unit groupings represent years 2000, 2001, 2002, and 
2003 from left to right.  Black bars represent thinned experimental units.    
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Figure 1.3.  Estimates and 95% confidence intervals for total small mammal biomass at the SP-A study site (units 1-4), the SP-B study site (units 1-4), and the SP-C 
study site (units 1-4) at the Southwest Plateau study area, northern Arizona.  Bars within experimental unit groupings represent years 2000, 2001, 2002, and 2003 
from left to right.  Black bars represent thinned experimental units.    
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Figure 1.4.  Density estimates and 95% confidence intervals for deer mice at the JM-B study site (units 1-4) and the JM-C study site (units 1-4) at the Jemez 
Mountains study area, northern New Mexico.  Bars within experimental unit groupings represent years 2001, 2002, and 2003 from left to right.  The black bar 
represents the thinned experimental unit and the striped bars represent burned experimental units.   
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Figure 1.5.  Density estimates and 95% confidence intervals for least chipmunks at the JM-B study site (units 1-4) and the JM-C study site (units 1-4) at the Jemez 
Mountains study area, northern New Mexico.  Bars within experimental unit groupings represent years 2001, 2002, and 2003 from left to right.  The black bar 
represents the thinned experimental unit and the striped bars represent burned experimental units.   
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Figure 1.6.  Estimates and 95% confidence intervals for total small mammal biomass at the JM-B study site (units 1-4) and the JM-C study site (units 1-4) at the 
Jemez Mountains study area, northern New Mexico.  Bars within experimental unit groupings represent years 2001, 2002, and 2003 from left to right.  The black 
bar represents the thinned experimental unit and the striped bars represent burned experimental units.   
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APPENDIX 1A:   

MODEL SELECTION RESULTS FROM MODELING OF CAPTURE PROBABILITIES AND MEAN MAXIMUM DISTANCE MOVED FOR 

SMALL MAMMAL SPECIES CAPTURED ON FIRE AND FIRE SURROGATE PROGRAM STUDY AREAS IN NORTHERN ARIZONA AND 

NORTHERN NEW MEXICO, USA 
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Table 1A.1.  Initial capture (p) and recapture probability (c) models and model selection results for Mexican woodrats at the Southwest Plateau study area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight. 
    
Model AICc ∆AICc Weight K 

{p (a.m.) = c (behavior)} 113.144 0.000 0.35294 3 

{p (a.m. + effort) = c (behavior)} 113.543 0.399 0.28913 4 

{p (a.m. + thin) = c (behavior)} 115.033 1.890 0.13722 4 

{p (a.m. + site) = c (behavior)} 116.390 3.246 0.06965 5 

{p (a.m. + year) = c (behavior)} 116.397 3.253 0.06938 5 

{p (a.m. + effort + site) = c (behavior)} 117.248 4.104 0.04534 6 

{p (a.m. + thin + site) = c (behavior)} 118.404 5.261 0.02543 6 

{p (a.m. + year + site) = c (behavior)} 120.098 6.954 0.01091 7 
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Table 1A.2.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Southwest Plateau study area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + effort + year + site) = c (behavior)} 3200.887 0.000 0.50661 10 

{p (a.m. + age + effort + thin + year + site) = c (behavior)} 3202.873 1.986 0.18768 11 

{p (a.m. + age + effort + year) = c (behavior)} 3203.073 2.186 0.16979 8 

{p (a.m. + age + effort + thin + year) = c (behavior)} 3205.077 4.190 0.06235 9 

{p (a.m. + age + effort + session(year) + site) = c (behavior)} 3206.976 6.089 0.02413 14 

{p (a.m. + age + effort + year + unit) = c (behavior)} 3207.942 7.055 0.01488 19 
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Table 1A.3.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Southwest Plateau 
study area.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m. + year) = c (behavior)} 194.310 0.000 0.40748 6 

{p (a.m. + thin + year) = c (behavior)} 195.342 1.032 0.24325 7 

{p (a.m. + age + year) = c (behavior)} 195.841 1.531 0.18953 7 

{p (a.m. + age + thin + year) = c (behavior)} 196.695 2.385 0.12368 8 
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Table 1A.4.  Initial capture (p) and recapture probability (c) models and model selection results for gray-collared chipmunks at the Southwest Plateau study area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + effort + thin + session(year) + unit) = c (behavior)} 3199.840 0.000 0.49517 23 

{p (a.m. + age + effort + thin + session(year)) = c (behavior)} 3201.832 1.991 0.18296 15 

{p (a.m. + age + effort + thin + session(year) + site) = c (behavior)} 3201.872 2.032 0.17926 15 

{p (a.m. + age + thin + session(year) + unit) = c (behavior)} 3204.719 4.879 0.04319 22 

{p (a.m. + age + effort + session(year) + unit) = c (behavior)} 3205.526 5.686 0.02885 22 

{p (a.m. + age + effort + thin + unit) = c (behavior)} 3206.190 6.350 0.02070 16 

{p (a.m. + age + effort + session(year)) = c (behavior)} 3206.402 6.562 0.01861 12 
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Table 1A.5.  Initial capture (p) and recapture probability (c) models and model selection results for cliff chipmunks at the Southwest Plateau study area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m.) = c (behavior)} 92.601 0.000 1.00000 3 
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Table 1A.6.  Initial capture (p) and recapture probability (c) models and model selection results for long-tailed voles at the Jemez Mountains study area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  Behavioral effects of capture were not estimable so were omitted. 
 
Model AICc ∆AICc Weight K 

{p (a.m.) = c } 131.269 0.000 0.72338 2 

{p (a.m. + age) = c } 133.192 1.923 0.27662 3 
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Table 1A.7.  Initial capture (p) and recapture probability (c) models and model selection results for Mexican woodrats at the Jemez Mountains study area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + year) = c (behavior)} 151.774 0.000 0.27512 6 

{p (a.m. + age + thin + year) = c (behavior)} 152.464 0.690 0.19484 7 

{p (a.m. + thin + year) = c (behavior)} 152.533 0.760 0.18817 6 

{p (a.m. + year) = c (behavior)} 153.338 1.564 0.12585 5 

{p (a.m. + thin + year + unit) = c (behavior)} 154.026 2.252 0.08921 10 

{p (a.m. + year + unit) = c (behavior)} 155.992 4.219 0.03338 9 

{p (a.m. + age + thin + year + unit) = c (behavior)} 156.158 4.384 0.03072 11 

{p (a.m. + age + year + unit) = c (behavior)} 156.853 5.080 0.02170 10 

{p (a.m. + thin) = c (behavior)} 157.646 5.873 0.01460 4 

{p (a.m.) = c (behavior)} 158.012 6.238 0.01216 3 
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Table 1A.8.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Jemez Mountains study area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + fire + year + site) = c (behavior)} 4162.729 0.000 0.36643 8 

{p (a.m. + age + fire + thin + year + site) = c (behavior)} 4163.170 0.441 0.29392 9 

{p (a.m. + age + fire + session(year) + site) = c (behavior)} 4164.444 1.716 0.15540 11 

{p (a.m. + age + fire + thin + session(year) + site) = c (behavior)} 4165.763 3.034 0.08037 12 

{p (a.m. + age + fire + year) = c (behavior)} 4168.000 5.271 0.02626 7 

{p (a.m. + age + fire + thin + year) = c (behavior)} 4168.462 5.733 0.02084 8 

{p (a.m. + age + fire + year + unit) = c (behavior)} 4169.135 6.406 0.01489 14 

{p (a.m. + age + fire + thin + year + unit) = c (behavior)} 4169.340 6.611 0.01344 15 

{p (a.m. + age + fire + session(year)) = c (behavior)} 4169.611 6.882 0.01174 10 
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Table 1A.9.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Jemez Mountains 
study area.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p (a.m.) = c (behavior)} 81.509 0.000 0.35369 3 

{p (a.m. + fire) = c (behavior)} 82.299 0.790 0.23829 4 

{p (a.m. + age) = c (behavior)} 83.459 1.950 0.13344 4 

{p (a.m. + year) = c (behavior)} 83.920 2.410 0.10599 5 

{p (a.m. + age + fire) = c (behavior)} 84.311 2.801 0.08716 5 

{p (a.m. + age + year) = c (behavior)} 86.130 4.621 0.03509 6 

{p (a.m. + fire + year) = c (behavior)} 86.137 4.627 0.03498 6 

{p (a.m. + age + fire + year) = c (behavior)} 88.387 6.878 0.01135 7 
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Table 1A.10.  Initial capture (p) and recapture probability (c) models and model selection results for least chipmunks at the Jemez Mountains study area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model AICc ∆AICc Weight K 

{p(a.m. + thin + session(year) + site) = c (behavior)} 1695.219 0.000 0.40672 10 

{p(a.m. + fire + thin + session(year) + site) = c (behavior)} 1696.950 1.731 0.17121 11 

{p(a.m. + age + thin + session(year) + site) = c (behavior)} 1697.241 2.022 0.14799 11 

{p(a.m. + thin + year + site) = c (behavior)} 1698.614 3.395 0.07450 7 

{p(a.m. + fire + thin + year + site) = c (behavior)} 1698.933 3.714 0.06351 8 

{p(a.m. + age + fire + thin + session(year) + site) = c (behavior)} 1698.969 3.750 0.06239 12 

{p(a.m. + age + thin + year + site) = c (behavior)} 1699.763 4.544 0.04194 8 

{p(a.m. + age + fire + thin + year + site) = c (behavior)} 1700.439 5.220 0.02991 9 
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Table 1A.11.  Mean maximum distance moved (MMDM) models and model selection results for Mexican woodrats (n = 5) at the Southwest Plateau study area.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike 
weight.   
 
Model AICc ∆AICc Weight K 

{MMDM (constant)} 50.201 0.000 1.00000 2 
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Table 1A.12.  Mean maximum distance moved (MMDM) models and model selection results for deer mice (n = 249) at the Southwest Plateau study area.  Model 
selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (effort)} 2076.831 0.000 0.30501 3 

{MMDM (year)} 2076.904 0.073 0.29410 5 

{MMDM (constant)} 2077.241 0.410 0.24846 2 

{MMDM (thin)} 2078.726 1.895 0.11828 3 

{MMDM (site)} 2081.241 4.410 0.03362 4 
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Table 1A.13.  Mean maximum distance moved (MMDM) models and model selection results for golden-mantled ground squirrels (n = 13) at the Southwest 
Plateau study area.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 
1% of the Akaike weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (constant)} 114.157 0.000 0.76076 2 

{MMDM (effort)} 116.471 2.314 0.23924 3 
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Table 1A.14.  Mean maximum distance moved (MMDM) models and model selection results for gray-collared chipmunks (n = 206) at the Southwest Plateau 
study area.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the 
Akaike weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (thin)} 1689.955 0.000 0.31410 3 

{MMDM (year)} 1690.100 0.145 0.29215 5 

{MMDM (effort)} 1690.859 0.904 0.19986 3 

{MMDM (constant)} 1691.237 1.282 0.16546 2 

{MMDM (site)} 1694.759 4.804 0.02843 4 
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Table 1A.15.  Mean maximum distance moved (MMDM) models and model selection results for cliff chipmunks (n = 4) at the Southwest Plateau study area.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike 
weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (constant)} 51.348 0.000 1.00000 2 
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Table 1A.16.  Mean maximum distance moved (MMDM) models and model selection results for long-tailed voles (n = 5) at the Jemez Mountains study area.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike 
weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (constant)} 34.631 0.000 1.00000 2 
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Table 1A.17.  Mean maximum distance moved (MMDM) models and model selection results for Mexican woodrats (n = 13) at the Jemez Mountains study area.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike 
weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (constant)} 102.440 0.000 0.58499 2 

{MMDM (year)} 103.127 0.687 0.41501 4 
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Table 1A.18.  Mean maximum distance moved (MMDM) models and model selection results for deer mice (n = 408) at the Jemez Mountains study area.  Model 
selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (year)} 3141.492 0.000 0.98256 4 
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Table 1A.19.  Mean maximum distance moved (MMDM) models and model selection results for golden-mantled ground squirrels (n = 5) at the Jemez Mountains 
study area.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the 
Akaike weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (constant)} 44.814 0.000 0.99995 2 
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Table 1A.20.  Mean maximum distance moved (MMDM) models and model selection results for least chipmunks (n = 104) at the Jemez Mountains study area.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike 
weight. 
 
Model  AICc ∆AICc Weight K 

{MMDM (year)} 830.441 0.000 0.000 4 

{MMDM (thin)} 832.378 1.937 1.937 3 

{MMDM (constant)} 835.652 5.211 5.211 2 

{MMDM (site)} 836.752 6.311 6.311 3 

{MMDM (fire)} 837.157 6.716 6.716 3 
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CHAPTER 2: 

SMALL MAMMAL POPULATION AND HABITAT RESPONSES TO VARIABLE-INTENSITY 

FOREST THINNING AND PRESCRIBED FIRE IN NORTHERN ARIZONA, USA 

 

INTRODUCTION 

Changes in the structure and function of ponderosa pine (Pinus ponderosa) forests of the 

southwestern United States (USA) have been documented and discussed extensively, with concerns over 

these changes increasing during the last decade (Cooper 1960, Dodge 1972, Covington and Moore 1994, 

Fulé et al. 1997, Mast et al. 1999, Allen et al. 2002).  Historical data indicate that in the period before Euro-

American settlement of the southwestern USA, ponderosa pine forests in the region experienced relatively 

frequent ground fires of predominantly low to moderate severity (Moore et al. 1999).  This disturbance 

pattern resulted in open stands of ponderosa pine with rich herbaceous understories.  Changes in land use 

and management in the southwestern USA since Euro-American settlement in the mid-nineteenth century, 

including extensive fire suppression, grazing, and logging, are believed to have resulted in increased tree 

densities, loss of the open structure of forests, declines in the biomass of herbaceous understories, and 

increased risk of high-severity wildfire (Cooper 1960, Savage and Swetnam 1990, Covington and Moore 

1994, Arno et al. 1995). 

Researchers and managers have developed fuel reduction treatments, frequently consisting of 

mechanical removal (i.e., thinning) of smaller trees followed by prescribed burning, to reduce the risk of 

high-severity wildfire in southwestern ponderosa pine forests (Covington et al. 1997; Lynch et al. 2000; 

Fulé et al. 2001a,b).  These treatments appear to be effective in reducing high-severity wildfire risk (Fulé et 

al. 2001a,b; Martinson and Omi 2002; Pollet and Omi 2002).  The ecological impacts of such treatments, 

however, are more difficult to assess.  In some cases, fuel reduction treatments are billed as forest 

restoration techniques in that they are designed to replicate what is known about pre-EuroAmerican 

settlement (hereafter, pre-Euro-settlement) forest conditions (Covington et al. 1997, Moore et al. 1999, 
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Lynch et al. 2000).  Implicit in the use of forest restoration as an ecological management approach is the 

assumption that restoration of historic forest conditions will provide for current forest ecological values, 

such as native wildlife diversity.  Assessing this assumption is critical to a careful evaluation of restoration 

as a method for maintaining forest ecological values, especially in light of changing climatic conditions and 

introduction of exotic species since EuroAmerican settlement (Wagner et al. 2000).     

 Information about fuel reduction/restoration treatment effects on small mammal communities in 

southwestern ponderosa pine forests is necessary for an understanding of broader ecological responses to 

treatments.  Small mammals impact forest vegetation structure through consumption and dispersal of seeds 

and hypogeous fungi (Tevis 1956, Gashwiler 1970, Maser et al. 1978, Price and Jenkins 1986).  

Furthermore, small mammal populations are food sources for predator populations in southwestern forests 

(e.g., Mexican spotted owls, Strix occidentalis lucida, and northern goshawks, Accipiter gentilis; Ward and 

Block 1995, Reynolds et al. 1996, Sureda and Morrison 1998, Long and Smith 2000, Ward 2001, Block et 

al. 2005).  Before managers adopt particular restoration or fuel reduction treatments, it is necessary to 

understand the potential impacts on small mammal habitats and populations. 

Unfortunately, much of the existing information on small mammal responses to forest thinning 

and prescribed fire is limited in its inferential strength.  Most examinations of forest management impacts 

on small mammals are based on indices of abundance (e.g., Tester 1965, Bock and Bock 1983, Masters et 

al. 1998, Steventon et al. 1998, Wilson and Carey 2000, Carey 2001).  Inference from abundance indices 

requires the assumption that the probability of detecting animals is constant across space, time, and 

treatment (Nichols 1992, Anderson 2001).  However, both thinning and fire influence detection 

probabilities and movements of small mammals (Chapter 1) as would be expected with major changes in 

habitat structure.  Therefore, the use of indices will result in biased estimates of treatment effects, and 

methods, such as mark-recapture, for estimating true abundance or density are necessary for valid 

inference.    

Small mammal communities in southwestern ponderosa pine are dominated by 2 taxa, including 

deer mice (Peromyscus maniculatus) and one of several species of chipmunks (Tamias spp.).  Deer mice 

are small (12-20 g) nocturnal murid rodents with omnivorous habits.  Deer mice are common throughout 

much of North America and are found frequently in early successional habitats (Fitzgerald et al. 1994).  
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The chipmunk species considered in this study, the gray-collared chipmunk (Tamias cinereicollis), is native 

to Arizona and New Mexico.  It is a medium-sized (20-70 g) omnivorous diurnal sciurid rodent that 

inhabits open woodlands (Hilton and Best 1993).  Important habitat components for both deer mouse and 

chipmunk populations include herbaceous vegetation, which provides seed and vegetation food sources 

(Ahlgren 1966, Goodwin and Hungerford 1979, Kyle and Block 2000, Wilson and Carey 2000), and forest 

floor woody debris, which is used for nesting and travel cover and as a source of invertebrate foods (Hayes 

and Cross 1987, Graves et al. 1988, Hilton and Best 1993, Bowman et al. 2000, Carey and Harrington 

2001).   

High herbaceous density is related to lower tree density in southwestern ponderosa pine forests 

(Clary 1975, Moore and Deiter 1992), presumably due to increased light, water, and nutrient availability 

under sparser tree canopies, and while burning may reduce herbaceous cover in the immediate aftermath of 

fire, there is evidence that herbaceous vegetation quickly recovers to greater than pre-fire levels after 

prescribed burns (Bock and Bock 1983, Harris and Covington 1983, Oswald and Covington 1983, Oswald 

and Covington 1984).  Thus, increases in herbaceous cover with thinning and prescribed burning treatments 

are expected.  Woody debris will be influenced by treatments – post-thinning slash should increase the 

amount of available woody debris immediately after thinning to a variable degree, depending on whether 

slash is removed, piled, or scattered.  Prescribed fire is expected to result in immediate reductions in woody 

debris (Covington and Sackett 1984, Arno et al. 1995), but high spatial variability in woody debris 

availability may result, depending on fire behavior and severity and initial woody debris loadings.  There is 

a need for better information on how forest thinning and prescribed fire treatments influence these 

components of small mammal habitat, and whether changes in these components alone allow prediction of 

changes in small mammal populations.                   

Positive responses to forest thinning treatments have been demonstrated for both chipmunks 

(Carey 2000, Carey 2001, Carey and Wilson 2001, Sullivan et al. 2001, Hadley and Wilson 2004, Chapter 

1) and deer mice (Carey and Wilson 2001, Suzuki and Hayes 2003, Chapter 1), as have positive responses 

of deer mice to prescribed fire (Tester 1965, Ahlgren 1966, Bock and Bock 1983).  Much less is known 

about potential responses to treatments of 2 other small mammal species in southwestern ponderosa pine 

forests: golden-mantled ground squirrels (Spermophilus lateralis) and Mexican woodrats (Neotoma 
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mexicana).  Golden-mantled ground squirrels are large (120-300 g), diurnal sciurids native to the western 

USA and southwestern Canada; they are omnivorous and inhabit meadows, shrublands, open woodlands, 

and disturbed forest (Goodwin and Hungerford 1979, Bartels and Thompson 1993, Fitzgerald et al. 1994).  

Given golden-mantled ground squirrels’ use of relatively open woodlands, positive responses to fuel 

reduction/restoration treatments appear likely.  Mexican woodrats are medium-sized (70-200 g) nocturnal 

murid rodents with omnivorous habits, inhabiting the southwestern USA, Mexico, and Central America.  

This woodrat species appears to be most closely linked with the presence of certain physical characteristics 

of habitats such as rocky slopes and outcrops (Cornely and Baker 1986, Fitzgerald et al. 1994, Sureda and 

Morrison 1999, Ward 2001, Block et al. 2005) but has also been linked positively with woody debris 

volume (Ward 2001) and shrubs (Sureda and Morrison 1999, Ward 2001, Block et al. 2005).  Relationships 

of any of these 4 small mammal species to variable disturbance intensity, e.g., variable intensity thinning, 

are not known.  

I considered small mammal habitat and population responses to fuel reduction/restoration 

treatments in southwestern ponderosa pine forests.  The objectives of the study were to examine the effects 

of restoration treatments on critical components of small mammal habitat 2 to 3 years after treatments were 

completed, where treatments consisted of variable-intensity thinning followed by prescribed burning, and 

to investigate how treatments and habitat components influenced small mammal population densities over 

the same time period.       

STUDY AREA 

The Fort Valley Study Area (FVSA) was located on and proximal to the Fort Valley Experimental 

Forest, Coconino National Forest, northwest of Flagstaff, Arizona, USA, at 35° N, 111° W.  The FVSA 

was located at 2,300 m elevation with flat to gently rolling topography.  A small drainage was located in 

experimental units 5 and 6, with steep stream banks and associated rocky outcrops.  Ponderosa pine 

dominated the canopy in the FVSA, with only an occasional southwestern white pine (Pinus strobiformis) 

or tree-sized Gambel’s oak (Quercus gambelii).  Understory shrubs were sparse, but the most common 

species were Wood’s rose (Rosa woodsii) and buckbrush (Ceanothus fendleri).   

Three replicate blocks, or sites, comprised the FVSA, and each site in turn consisted of 4 

experimental units.  The experimental units were 14.2 ha (35 acres) in size.  An experimental unit at each 
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site was assigned randomly to a control and to each of 3 treatments (described below).  At site 1, 

experimental units 1-4 were contiguous; at site 2, units 5-7 were contiguous, but not contiguous with unit 8; 

and at site 3, experimental units 9-12 were not contiguous.  Experimental units within all of the sites were < 

1.5 km from each other.  Fulé et al. (2001a) provide further description of the study area.               

METHODS 

Treatments 

Fuel reduction/restoration treatments were designed and described by Fulé et al. (2001a).  

Thinning activities were based around remnant (i.e., living or evidence of dead) pre-Euro-settlement trees.  

All living trees of pre-Euro-settlement origin in the experimental units were recorded; trees were presumed 

to be of pre-Euro-settlement origin if they were of large size and had yellowed bark (ponderosa pine bark 

changes from black to yellow as trees age).  Also, snags, logs, and stumps of pre-Euro-settlement origin 

were recorded.  Then, a 9.1 m- (30 ft) or, if that area was inadequate, an 18.3 m- (60 ft) radius area was 

searched around each remnant.  Post-Euro-settlement trees were retained in that area as follows: for the 1.5-

2 treatment, 1.5 trees (i.e., 3 trees for every 2 pre-Euro-settlement remnants ) ≥ 40.6 cm (16 in) diameter at 

breast height (dbh) or 3 trees < 40.6 cm dbh were retained; in the 2-4 treatment, 2 trees ≥ 40.6 cm dbh or 4 

trees < 40.6 cm dbh were retained; and in the 3-6 treatment, 3 trees ≥ 40.6 cm dbh or 6 trees < 40.6 cm dbh 

were retained.  All living remnants were also retained.  Therefore, the 1.5-2 treatment represented 

nominally the largest reduction in post-Euro-settlement trees, followed by the 2-4 treatment, and then the 3-

6 treatment. 

Thinning was conducted during 1999, but all treated experimental units were not completed 

simultaneously.  By the time of small mammal trapping in 1999 (late summer), all thinning was complete 

(defined as all activity completed except for road blading and closure) except for on experimental unit 5 

and half of experimental unit 6.  These units were completed in the fall of 1999.  Treatment units were then 

prescribed burned during the spring of 2000 (units 1, 2, and 4) and the spring of 2001 (units 5, 6, 7, 10, 11, 

and 12).  Control units (3, 8, and 9) received neither thinning nor burning.                               

Treatment of slash from thinning operations differed by site because of the use of different 

thinning contractors and resulting differences in thinning methods used.  At sites 1 and 2, slash was 

chopped and scattered, while at site 3, slash was piled. 
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Habitat Sampling and Variable Construction 

All sampling (i.e., habitat sampling and small mammal trapping) was conducted at 2 sampling 

grids located in each of the experimental units.  Grids were placed at least 50 m from the experimental unit 

boundaries and at least 100 m from the other sampling grid within the experimental unit.  The location of 

sampling grids was constant throughout the study.  Grids consisted of 22 sampling stations, arranged in 2 

parallel lines spaced 20 m apart, each with 11 sampling stations also placed 20 m apart – thus yielding a 

sampling grid of nominally 20 m x 200 m, or 0.4 ha.     

Five-m radius habitat plots were centered on each of the sampling stations.  Pre-treatment 

vegetation sampling was conducted from mid October to early December in 1998 and post-treatment 

sampling was conducted from late September to early November in 2003.  All trees in the habitat plots 

were tallied; trees were defined as woody plants taller than 2 m with dbh ≥ 10 cm.  Additionally, each log ≥ 

2 m in length and with a midpoint diameter ≥ 10 cm was measured, including its length and diameter.  A 

random transect 10 m long was placed across the diameter of the habitat plot, and point intercept data were 

recorded at 1-m intervals on characteristics of ground and tree cover, including grasses, forbs, rocks, 

lichens, moss, woody debris, dung, litter and woody vegetation cover.   

 Metrics calculated based on the habitat sampling data included percent change in the number of 

trees from 1998 to 2003, which served as a measure of thinning intensity, as well as 2 metrics relating to 

small mammal habitat, including percent change in herbaceous vegetation from 1998 to 2003, and percent 

change in woody debris volume from 1998 to 2003.  The number of trees was assessed by averaging the 

number of trees in each of the 22 habitat plots within a sampling grid.  An index of herbaceous vegetation 

was constructed by summing the number of points on each of the 10-m point intercept transects that 

intersected either a grass or a forb, then averaging these counts over each sampling grid.  Woody debris 

calculations for a sampling grid were based on the average volume of logs in the habitat plots; volume was 

calculated by assuming that logs were cylindrical.  I assessed the percent change in each metric by 

averaging the grid values over the 2 grids within an experimental unit, and computing the percent change in 

the metric for that unit as 

Metric 1998
Metric 1998 - Metric 0032 .                                                            (1)   
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Inference was based on the experimental unit scale, rather than the sampling grid scale, to avoid problems 

of pseudoreplication (Hurlbert 1984).  For each metric, the standard error of the percent change was 

calculated based on a delta-method transformation of the standard error of the original data (Seber 2002), 

and 95% confidence intervals were constructed in order to examine differences in the metrics between 

treated and control units and across treatment intensities.   

Small Mammal Trapping 

Small mammal trapping was conducted at each of the sampling grids.  One large (7.6 x 8.9 x 22.9 

cm) and 1 extra-large (10.2 x 11.4 x 38.1 cm) folding Sherman live-trap were placed in the vicinity of each 

sampling station, for a total of 44 traps per sampling grid.  Traps were positioned along small mammal 

trails, at the openings of burrow holes, and/or in proximity to rocks or woody debris.  A wood shingle was 

used to shade and insulate traps.  Cotton batting was placed at the back of each trap for insulation, and 

approximately 20 mL of a bait mixture of rolled oats and chicken feed was placed in each trap, with an 

additional small amount of bait placed outside trap entrances.   

Small mammal trapping was conducted from 2 September to 5 October in 1998, from 16 

September to 19 October in 1999, from 28 August to 29 September in 2001, from 10 September to 8 

October in 2002, and from 9 September to 10 October in 2003 during 3 trapping sessions in each year.  

Sampling grids were randomly selected for trapping during 1 of the 3 trapping sessions, with the 2 trapping 

grids within each experimental unit precluded from being trapped in the same session.  Trapping sessions 

were terminated once approximately 90% of the captured animals on a trapping occasion were recaptures, 

yielding trapping sessions of between 8 and 11 trapping occasions (i.e., 4 to 5.5 days of 2 trapping 

occasions per day).  Because thinning was not completed as of the beginning of trapping in 1999, 

experimental unit 5 was not trapped and only the completed half (i.e., 1 sampling grid) of experimental unit 

6 was trapped in 1999.  No trapping was conducted during 2000, complete post-treatment sampling was 

conducted in 2001-2003. 

Traps were checked in the morning and afternoon, and the following data were recorded: trap 

location and size, species, new or recapture, individual identity, age class, sex, mass, and release condition.  

Animals were individually identified with 2 unique ear tags. 

Small Mammal Data Analysis 
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The estimation and modeling of small mammal densities is similar to that described in Chapter 1.  

Inference was based on estimates of true density, rather than on indices of abundance in which changes in 

detection probabilities across time, space, and treatments are ignored (Nichols 1992, Anderson 2001, 

Chapter 1).  First, I estimated abundance for each species each year (1998-1999, 2001-2003) in each 

sampling grid, based on the mark-recapture data.  Second, I estimated effective trapping area at the same 

scale as for abundance.  Third, I calculated species’ densities and variance-covariance matrices at a unit 

scale in each year (1998-1999, 2001-2003), by combining abundance and area to calculate density 

(individuals per ha) and then averaging density estimates over the 2 trapping grids in each experimental 

unit.  Finally, I modeled unit-scale densities from the first and last years of the study (1998 and 2003) with 

weighted least-squares regression analyses as a function of year, site, treatment, and habitat variables.  I 

calculated species densities based on the trapping data from all years to increase the precision of estimates, 

but I conducted density modeling based on only the 1998 and 2003 density estimates because my primary 

interest was in linking densities to the habitat variables which were measured in those years.    

Throughout the analyses, I employed an information-theoretic philosophy of model selection with 

a focus on multi-model inference (Burnham and Anderson 2002).  Tools employed included model 

selection based on Akaike’s Information Criterion (AIC; Akaike 1973) corrected for small sample size 

(AICc; Hurvich and Tsai 1989), and model-averaging based on Akaike weights (Burnham and Anderson 

2002).  Before the analysis was begun, statistical model sets were specified (i.e., a priori), to strengthen 

inference (Anderson et al. 2001). 

Abundance Estimation.—Abundance estimates for each sampling grid in each year of trapping 

were obtained through analysis of the mark-recapture data using the Huggins conditional likelihood model 

(Huggins 1989, 1991).  The Huggins conditional likelihood model provides for estimation of detection 

probabilities under the assumption of population closure, and allows for behavioral responses to capture, 

time effects on detection probabilities, and individual heterogeneity in detection probabilities through 

inclusion of individual covariates (Model Mtbh; Otis et al. 1978).  The Huggins conditional likelihood 

estimates initial capture (pi, i = 1, …, t) and recapture rates (ci, i = 2, …, t) for t occasions based on animal 

encounter histories and uses these rates to generate estimates of abundance, as  
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where 1+tM  is the number of unique individuals marked on a grid during t trapping occasions, i.e., the 

minimum known population size, and pt is the estimate of initial capture rate for occasion t.   

I used age class as an individual covariate to account for individual heterogeneity in detection 

probabilities.  I classified animals as either adults or subadults based on mass and external evidence of 

reproductive status (McCravy and Rose 1992).  Deer mice were defined as adults when ≥14 g, gray-

collared chipmunks when ≥50 g, Mexican woodrats when ≥100 g, and golden-mantled ground squirrels 

when ≥150 g, based on field observations and information in the literature (Hilton and Best 1993, 

Fitzgerald et al. 1994).   

Estimation of abundance was conducted in Program MARK 3.2 (White and Burnham 1999).  I 

proposed several a priori models of detection probabilities.  Effects in models of detection probability 

included 2 that were in all models based on a priori considerations: behavioral responses to capture and 

time of day (i.e., a.m. versus p.m. trap check).  Additional effects considered were age of animal, year, 

experimental unit, and 2 variables to estimate the effects of treatments on detection probabilities.  The first 

of these variables was a bivariate prescribed fire effect (applied on all treatment units beginning in 2001).  

The second of these variables was the average number of trees per habitat plot, where the average was 

calculated for each experimental unit.  The number of trees variable was used to model changes in habitat 

conditions due to thinning.  Because reduction in the number of trees was primarily due to thinning 

activities (prescribed fire did not result in tree mortalities), this variable represented an estimate of thinning 

intensity.  Thus, 1998 measures of the number of trees were applied to estimation of detection probability 

in 1998, and 2003 measures of the number of trees were applied in all subsequent years, i.e., all years post-

thinning.  I further modeled an interaction effect between treatment (fire * number of trees) and post-

treatment year (i.e., the interaction effect applied in 2001-2003).  A total of 36 abundance models were 

considered.     

Abundance estimation was conducted for each of the 4 marked species.  Estimates from each 

model were checked and models that produced nonsensical estimates (i.e., estimates on the order of 

hundreds or thousands of individuals on a single trapping grid) were deleted.  Such nonsensical estimates 
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occur under the Huggins conditional likelihood when effects in the models are not estimable or are poorly 

estimable.  I model-averaged abundance estimates and variance-covariance matrices across the remaining 

models.  Model-averaged abundance estimates were computed based on Akaike weights as described in 

Burnham and Anderson (2002) and model-averaged variance-covariance matrices were computed based on 

Burnham and Anderson (2004).   

Effective Trapping Area.—I used the mean maximum distance moved (MMDM) method to 

estimate effective trapping area (Wilson and Anderson 1985), the area to which an abundance estimate 

applies.  I calculated the maximum distance moved between any 2 traps for each marked animal with ≥2 

captures in a given sampling grid in a given year.  I specified regression models (PROC REG; SAS 

Institute 2003) to determine model weights and estimate values of MMDM.  Only single parameter models 

were considered, including MMDM as a constant value across sampling grids and years, and as a function 

of year, experimental unit, fire, number of trees, and the interaction between treatment (fire * number of 

trees) and post-treatment year, for a total of 6 regression models of MMDM.  Fewer, less complex models 

were considered than in the abundance analysis because less information is available in the mark-recapture 

data to estimate movements as compared to detection probabilities (Chapter 1).  I computed AICc for each 

of the regression models (Burnham and Anderson 2002).  I then calculated a vector of MMDM estimates 

under each model across the sampling grids and years based on the regression coefficients, along with a 

variance-covariance matrix across the grids and years based on a delta-method transformation of the 

variance-covariance matrix of the regression coefficients (Seber 2002).  I then calculated effective trapping 

area under each model by adding a buffer strip with a width of one-half the model-averaged MMDM to the 

area of each trapping grid (Otis et al. 1978, Wilson and Anderson 1985), and calculated the variance-

covariance matrix of effective trap area under each model using a delta-method transformation of the 

MMDM variance-covariance matrix, which was then converted from m2 to ha.  Finally, I model-averaged 

the vectors of effective trapping area and their variance-covariance matrices across all models, as described 

in Burnham and Anderson (2002).          

Densities and Variance-Covariance Matrices.—Species-specific densities were calculated on each 

sampling grid in each year as the abundance divided by the effective trapping area for that grid.  These 

estimates were then averaged across the 2 sampling grids in each experimental unit to calculate the average 
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density within an experimental unit in each year.  A series of delta-method transformations was used to 

convert the variance-covariance matrices of abundance and effective trapping area at the grid scale to a 

variance-covariance matrix of density at the experimental unit scale (Seber 2002).  Inference was based on 

the unit scale, rather than the grid scale, as noted for the habitat analysis, to avoid problems of 

pseudoreplication (Hurlbert 1984).    

Weighted regression analysis cannot be conducted with variances of 0 because the variance-

covariance matrix is singular.  Variances of 0 occurred in the density variance-covariance matrix for a 

species when no animals of that species were caught on a given experimental unit in a given year.  In order 

to provide positive variances in these cases, I fit a linear regression (PROC REG; SAS Institute 2003) of 

the natural log of positive variances against their corresponding density estimates and determined the 

regression intercept (Franklin 1997).  The exponential of the regression intercept then served as the 

variance for the 0 density estimates.   

Treatment Effects Analysis.—The analysis of treatment effects was conducted under a weighted 

least-squares regression analysis (Draper and Smith 1998) in PROC IML (SAS Institute 2003).  The 

computational details of the analysis, including calculation of AICc, regression coefficients, and variance 

estimates are provided in Chapter 1.     

My interest was in modeling species densities in 1998 and 2003 in order to examine impacts of the 

vegetation variables, which were measured in those years, on densities.  Therefore, I extracted the 1998 and 

2003 portions of the vectors of density estimates and variance-covariance matrices from those for the 

vectors and matrices for all years (1998-1999, 2001-2003).  I specified multiple a priori models describing 

responses of small mammal densities to treatments and to habitat components.  Effects in the models 

included 2 blocking effects, year and site (year was included in all models based on a priori 

considerations).  Additionally, 2 habitat effects were considered, including herbaceous vegetation and 

woody debris, as well as 2 treatment effects, including treatment intensity (number of trees) and a bivariate 

treatment effect (treated, control).  The herbaceous vegetation effect was constructed from the indices of 

herbaceous vegetation for each experimental unit in each year of the study.  The woody debris effect was 

constructed from the average volume of woody debris in each habitat plot for each experimental unit in 

each year.  The treatment intensity effect was constructed from the average number of trees in habitat plots 
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for each of the experimental units in each year.  The bivariate treatment effect was modeled on treated units 

in 2003.  I considered all combinations of the effects for a total of 32 density models.   

For each of the effects, I constructed relative importance values (Burnham and Anderson 2002), 

and used these metrics to rank the treatment and habitat variables in order of their importance in 

influencing densities.  Relative importance values are calculated by summing the weights over all models 

in a balanced set which include a given effect.  Simulation studies have suggested that relative importance 

values of 0.40 or higher indicate that a given variable is having an effect on the process of interest (G. C. 

White, Colorado State University, unpublished data).       

RESULTS 

Habitat Components 

 Confidence intervals (95%) indicated that percent change in trees, percent change in herbaceous 

cover, and percent change in woody debris were different between treated experimental units and controls 

(Table 2.1).  All variables also differed to some degree by treatment type.      

On average, the number of trees declined 71% on experimental units that received the 1.5-2 

treatment, 75% on 2-4 experimental units, and 55% on 3-6 experimental units.  As expected, the 1.5-2 

treatment resulted in a larger decline in the number of trees than the 3-6 treatment, but, unexpectedly, the 

1.5-2 treatment resulted in a slightly smaller decline in the number of trees than the 2-4 treatment, an 

apparent result of variations in the number of pre-Euro-settlement remnants on the experimental units.  The 

percent change in the number of trees on control units between 1998 and 2003 was not statistically different 

than 0 (Table 2.1).  The number of trees ranged from 4,500 – 7,900 per ha prior to treatment (all 

experimental units).  After treatment, the number of trees on 1.5-2 units ranged from 1,000 – 2,313 per ha, 

the 2-4 units ranged from 1,400 – 1,900 per ha, and the 3-6 units ranged from 2,000 – 3,200 per ha.         

Overall, herbaceous cover increased substantially with fuel reduction/restoration treatments.  

Herbaceous cover increased 199% on the 1.5-2 treatment units, 208% on the 2-4 treatment units, and 62% 

on the 3-6 treatment.  The percent changes on the 1.5-2 and 3-6 treatment units were statistically different 

from each other (Table 2.1), but neither was statistically different from the change on 2-4 treatment units.  

The percent change in herbaceous cover on control units did not differ statistically from 0.     
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Finally, woody debris declined after treatment on all the treated units.  The decline was 44% on 

1.5-2 units, 78% on 2-4 units, and 78% on 3-6 units.  There was no statistical difference between the 2-4 

and 3-6 treatments, but the 1.5-2 treatment was different from the 2-4 and 3-6 treatments (Table 2.1).  

Change in woody debris on control units did not differ statistically from 0.  Pre-treatment woody debris 

volume ranged from approximately 1.3 –  6.0 m3/m2 (all experimental units); post treatment volumes on 

treated units ranged from approximately 0.3 – 2.4 m3/m2.                                   

Small Mammal Populations 

During small mammal trapping at the FVSA, 5 species were captured (Table 2.2).  These were 

deer mice, brush mice (Peromyscus boylii), gray-collared chipmunks, golden-mantled ground-squirrels, and 

Mexican woodrats.  Deer mice and brush mice were combined in all analyses, and are herein referred to as 

deer mice, because so few brush mice were captured (4 total individuals; Table 2.2), and because these 

species may be difficult to distinguish in some cases, e.g., as juveniles. 

For all 4 small mammal species monitored, estimated densities were generally higher in the first 2 

years of the study (1998-1999) than in the last 3 years (2001-2003).  These differences were most apparent 

for deer mice, golden-mantled ground squirrels, and woodrats (Figures 2.1 – 2.4).  Deer mouse densities 

averaged 18.18 (SE = 0.15, range = 5.46 – 31.20) individuals per hectare in 1998-1999, and 5.95 (SE = 

0.06, range = 0 – 17.35) in 2001-2003.  Gray-collared chipmunk densities averaged 3.45 (SE = 0.02, range 

= 0.46 – 7.99) individuals per hectare in 1998-1999, and 2.33 (SE = 0.02, range = 0 – 7.01) in 2001-2003.  

Golden-mantled ground squirrel densities averaged 1.48 (SE = 0.01, range = 0 – 5.78) individuals per 

hectare in 1998-1999, and 0.43 (SE = 0.00, range = 0 – 3.36) in 2001-2003.  Mexican woodrat densities 

averaged 2.09 (SE = 0.01, range = 0 – 6.06) individuals per hectare in 1998-1999, and 0.14 (SE = 0.00, 

range = 0 – 1.79) in 2001-2003.       

Modeling of detection probabilities for the estimation of abundance indicated support for detection 

probabilities varying over individuals, time, space, and treatments (Appendix 2A).  Age effects appeared in 

the top AICc–ranked models of detection probabilities for deer mice, gray-collared chipmunks, and golden-

mantled ground squirrels; year effects appeared in the top models for deer mice, gray-collared chipmunks, 

and Mexican woodrats; unit effects appeared in the top models for deer mice and gray-collared chipmunks; 
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and the fire effect, number of trees effect, and treatment * year interaction terms all appeared in the top 

model for gray-collared chipmunks.    

Modeling results from the MMDM analysis indicated some support for movements varying by 

treatment (Appendix 2A).  The top model for gray-collared chipmunks contained the treatment * year 

effect.  The top-ranked models for all other species were constant models.      

The top-ranked model of deer mouse densities was model (year + site + trees), with a weight of 

0.13 (Table 2.3).  The second-ranked model, with nearly equal weight, was model (year + site).  Site had 

the highest relative importance value, 0.87, while the number of trees variable had a relative importance of 

0.42 and a negative effect size (Table 2.4).  All other relative importance values were < 0.40. 

For gray-collared chipmunks, the top-ranked model, with a weight of 0.29, was model (year + site 

+ trees + woody debris + treatment; Table 2.5).  The second-ranked model, which also had high weight 

(0.26), was model (year + site + trees + herbaceous + woody debris + treatment).  Of the variables in the 

top model, the variable with the largest relative importance was woody debris (1.00), followed by number 

of trees (0.97), treatment (0.82), and site (0.71).  Herbaceous vegetation, which appeared in the second-

ranked model, had a relative importance of 0.50.  Woody debris had a positive regression coefficient, while 

number of trees, treatment, and herbaceous vegetation had negative regression coefficients.                      

For golden-mantled ground squirrels, the top-ranked model included only the year effect, and had 

a weight of 0.14 (Table 2.7).  The relative importance values for each of the site, habitat, and treatment 

variables were < 0.40 (Table 2.8).     

In the analysis of Mexican woodrat densities, the top model was model (year) with a weight of 

0.11; however, model (year + woody debris) was ranked nearly as high, with a ∆AICc value of 0.16 and a 

weight of 0.10 (Table 2.9).  The relative importance value for the woody debris effect was 0.60, and the 

effect size was positive, though small (Table 2.10).  All other effects had relative importance values < 0.40.   

DISCUSSION 

The fuel reduction/restoration treatments examined in this study resulted in changes in small 

mammal habitat components, with herbaceous vegetation increasing after treatments and woody debris 

declining.  The greatest recorded increase in herbaceous vegetation was slightly more than a doubling of 

the index of herbaceous vegetation on the 2-4 treatment units, indicating that treatments affected large 
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increases in herbaceous vegetation within 2-3 growing seasons after treatment.  These findings are 

supported by studies indicating increases in herbaceous vegetation in ponderosa pine and other forests by 1-

2 growing seasons after thinning and/or prescribed fire (Clary 1975, Bock and Bock 1983, Harris and 

Covington 1983, Covington et al. 1997, Carey and Wilson 2001, Griffis et al. 2001), and based on the 

demonstrated negative relationship between overstory density and herbaceous vegetation in these forests 

(Moore and Deiter 1992).  Woody debris volume declined between 44% and 78% after treatments.  This 

decline was least pronounced with the 1.5-2 treatment, a result that was likely due to local variations in the 

volume of deposited slash and fire intensity; the smaller decline in the 1.5-2 treatment was apparently not 

due to an overall greater amount of woody debris inputs from slash, based on the percent change in number 

of trees.  Covington and Sackett (1984) documented declines of approximately 60% in woody debris after 

prescribed fire in southwestern ponderosa pine; similar to the values recorded here.  Therefore, for both 

herbaceous vegetation and woody debris, treatment-related habitat changes were approximately as 

expected. 

Estimated densities of small mammals were generally lower during the last 3 years of this study 

than during the first 2 years.  Deer mouse densities estimated from nearby study sites (within 50 km) during 

the period 2000 to 2003 (0 – 8.5 individuals per ha; Chapter 1) were similar or even smaller than those 

estimated in 2001-2003 for this study (0 – 17.35 individuals per ha).  Similarly, for gray-collared 

chipmunks, estimates were comparable or slightly smaller in nearby study sites than in this study (0 – 3.3 

individuals per ha in nearby study sites compared to 0 – 7.01 individuals per ha in this study).  Reduced 

population densities in 2001-2003 may have been due at least partially to weather patterns.  The 

southwestern USA was experiencing a drought during the early 2000s, and lack of rainfall may inhibit 

development of food sources for small mammals.  Total precipitation in the Flagstaff area from September 

to April was 41 cm in 1997-1998, 35 cm in 1998-1999, 32 cm in 2000-2001, 12 cm in 2001-2002, and 32 

cm in 2002-2003 (Flagstaff-Pulliam Airport data, National Climatic Data Center, available at 

www.ncdc.noaa.gov/oa/ncdc.html).  The changes in small mammal populations across years in this study 

may have made it difficult to detect additional effects of treatments or treatment-related habitat changes.  

 Woody debris was the best predictor of both gray-collared chipmunk and Mexican woodrat 

densities.  A positive relationship between gray-collared chipmunk densities and woody debris was 
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expected, based on chipmunks’ use of logs and stumps for traveling, nesting, and feeding platforms (Hilton 

and Best 1993).  A weak positive relationship between Mexican woodrats and woody debris has previously 

been documented (Ward 2001), and woody debris may also provide cover and foraging opportunities for 

Mexican woodrats, but physical characteristics of the habitat, such as availability of rocky slopes, may be a 

more important determinant of Mexican woodrat population densities.  Deer mouse populations have also 

been tied to the availability of woody debris (Carey and Johnson 1995, Menzel et al. 1999, Carey and 

Harrington 2001, Suzuki and Hayes 2003), and while a positive regression coefficient for the effect of 

woody debris on deer mice was estimated in this study (Table 2.4), an important relationship was not 

indicated, based on the low relative importance value of woody debris in the deer mouse analysis.  Previous 

research suggesting that availability of slash may have a positive impact on post-thinning chipmunk and 

deer mouse densities in southwestern ponderosa pine forests (Goodwin and Hungerford 1979, Chapter 1) 

implies that leaving post-thinning slash piles where possible may help to support local small mammal 

populations. 

Surprisingly, strong positive links between herbaceous vegetation and small mammal densities 

were not supported in this study.  However, gray-collared chipmunk densities were negatively, though 

weakly, linked with herbaceous vegetation.  Deer mouse populations have been shown to respond to 

increases in herbaceous food and cover after thinning (Wilson and Carey 2000, Carey and Wilson 2001), 

though Hadley and Wilson (2004) demonstrated a negative relationship between deer mice and herbaceous 

cover in forests where deer mice competed with southern red-backed voles (Clethrionomys gapperi).  Also, 

chipmunk densities were highest in thinned stands with understory development in the Pacific Northwest 

(Carey 2000, Wilson and Carey 2000, Carey 2001, Sullivan et al. 2001).  It is necessary to investigate more 

closely the relationship between herbaceous vegetation and densities of small mammals in these forests.  

An alternate metric, such as total herbaceous biomass, may be more appropriate than the point intercept-

based metric used here.   

Treatment effects, including thinning intensity (modeled as number of trees) and the bivariate 

treatment variable, were important predictors of both deer mouse and gray-collared chipmunk densities.  

The average number of trees had a negative impact on both deer mouse and gray-collared chipmunk 

densities.  This finding supports previous research that both deer mice and chipmunks benefit from thinning 
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in southwestern ponderosa pine forests (Goodwin and Hungerford 1979, Chapter 1), and Pacific Northwest 

forests (Wilson and Carey 2000, Carey and Wilson 2001).  Deer mice also increased after thinning in 

Oregon Douglas-fir forests (Pseudotsuga menziesii), though the populations did not appear to vary by 

thinning intensity (Suzuki and Hayes 2003).  Gray-collared chipmunk densities in this study were also 

related to the bivariate treatment effect, though with a negative regression coefficient.  The bivariate 

treatment effect simultaneously modeled the effect of thinning and prescribed fire.  Thinning had a positive 

impact on gray-collared chipmunks, but thinning and prescribed fire combined had a negative impact on 

gray-collared chipmunks, presumably because prescribed fire reduced woody debris availability.  This 

lends further support to the result that woody debris is the strongest determinant of chipmunk densities. 

Overall, increases in habitat complexity, particularly development of understories, appear to 

positively influence small mammal populations (Goodwin and Hungerford 1979, Monthey and Soutiere 

1985, Carey and Johnson 1995, Clough 1997, Wilson and Carey 2000, Carey and Harrington 2001) in 

southwestern ponderosa pine and other forests.  One important component of small mammal habitat in 

many forests is shrubs, which provide for habitat complexity and frequently provide a source of food (e.g., 

Carey and Johnson 1995, Block et al. 2005).  However, shrubs were relatively infrequent on the Fort Valley 

study area, and therefore I did not expect, and thus did not estimate, relationships between small mammals 

and shrub cover. 

Questions exist over whether knowledge of historical conditions in southwestern ponderosa pine 

forests is adequate to restore these conditions.  For instance, historical mean fire return intervals, as 

frequently reconstructed for southwestern ponderosa pine forests using fire scar techniques, may 

underestimate the length of fire-free intervals (Baker and Ehle 2001).  If such information is used to 

determine rates of prescribed fire entry in current forest management, the result may be a reduction in 

woody debris below levels historically experienced by small mammals in these forests, and potential 

declines in small mammal populations.  The results of this study underscore how overly-frequent burning 

could negatively impact at least one dominant small mammal species (gray-collared chipmunks) in these 

forests.  Furthermore, even if historical knowledge was adequate and restoration of historical conditions 

was possible, it is unclear that restoring historical conditions would result in conservation of all forest 

ecological values (Wagner et al. 2000).  In light of changing climatic conditions, the presence of exotic 
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plant species, and significant land area in human uses, such as cities and suburban areas, restoring 

conditions present in southwestern forests prior to Euro-settlement may not be the best way to conserve 

forest ecological values.  Certainly, monitoring of treated areas will be necessary, and an adaptive 

management philosophy (Walters 1986) may be beneficial to the management of forests to reduce fire risk 

and provide for ecological values.  Brown et al. (2004) further cautioned that appropriate use of thinning 

and prescribed fire to manage forest ecological values would include careful attention to site-specific 

conditions. 

There is a need to carefully assess ecological effects of fuel reduction and restoration treatments 

over longer time periods.  In this study, major changes in population densities over the course of the study 

may have masked additional effects of treatments or habitat variables; studying populations over longer 

time periods will reduce the impact of high temporal variation on the estimation of treatment effects.  

Furthermore, the lack of consistency in the timing of treatments may have reduced the quality of 

information available in the data.  Better controlled, longer-term experiments with multiple re-entries of 

thinning and/or prescribed fire are needed to elucidate effects of potential southwestern ponderosa pine 

management strategies on forest ecology.  Researchers should seek opportunities to partner with forest 

management agencies to make such experiments feasible.     
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Table 2.1.  Vegetation changes with 3 levels of thinning treatment (described in text) followed by burning.  Vegetation was measured in 1998 and 2003.   
 
Block Unit Treatment % Change in Trees (95% CI) % Change in herbaceous (95% CI) % Change in woody debris (95% CI) 

1 1 1.5-2 -86.8 (-87.0, -86.7) 175.4 (93.3, 257.5) -65.0 (-70.8, -59.2) 

2 6 1.5-2 -59.3 (-60.4, -58.2) 241.7 (47.2, 436.1) -34.2 (-59.4, -8.9) 

3 10 1.5-2 -66.1 (-66.9, -65.3) 180.0 (89.7, 270.3) -32.7 (-96.5, 31.1) 

  Mean -70.8 (-71.2, -70.3) 199.0 (122.5, 275.5) -43.9 (-52.6, -35.3) 

1 2 2-4 -82.3 (-82.6, -82.0) 237.8 (-49.7, 525.2) -77.6 (-81.2, 74.0) 

2 7 2-4 -67.3 (-67.6, -67.0) 293.8 (51.5, 536.0) -74.0 (-76.4, -71.7) 

3 12 2-4 -75.9 (-76.2, -75.6) 91.5 (49.4, 133.6) -83.7 (-84.4, -83.0) 

  Mean -75.2 (-75.3, -75.0) 207.7 (81.6, 333.8) -78.4 (-80.4, -76.5) 

1 4 3-6 -57.5 (-58.8, -56.3) 36.4 (-2.9, 75.6) -76.9 (-83,1, -70.7) 

2 5 3-6 -51.7 (-52.9, -50.5) 100.0 (4.7, 195.3) -84.3 (-84.9, -83.7) 

3 11 3-6 -55.6 (-57.0, -54.3) 48.1 (36.1, 60.1) -72.2 (-74.6, -69.8) 

  Mean -55.0 (-55.7, -54.2) 61.5 (26.9, 96.1) -77.8 (-79.9, -75.7) 

1 3 Control 1.3 (-0.8, 3.4) -10.3 (-31.8, 11.3) 9.3 (-36.8, 55.4) 

2 8 Control 0.5 (-3.6, 4.5) -6.3 (-44.0, 31.5) -7.4 (-41.6, 26.8) 

3 9 Control 4.7 (-2.1, 11.5) 15.7 (7.7, 23.7) 25.9 (-56.3, 108.1) 

  Mean 2.1 (-0.6, 4.9) -0.3 (-15.0, 14.5) 9.3 (-9.9, 28.4) 
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Table 2.2.  Numbers of unique individuals captured in each trapping grid each year for 5 species of small mammals caught on the Fort Valley study area, 
northern Arizona, 1998-1999 and 2001-2003.   
 
Species Mt+1 

 1998 1999 2001 2002 2003 Total 

Mexican woodrat 21 39 1 3 3 67 

Golden-mantled ground squirrel 50 43 23 13 8 137 

Gray-collared chipmunk 97 135 78 85 79 474 

Deer mouse  442 247 45 146 111 995 

Brush mouse  0 1 0 1 2 4a 

aDeer mice and brush mice were combined for analyses.   
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Table 2.3.  Model selection results from weighted regression analysis of deer mouse densities at the Fort Valley study area, northern Arizona, 1998 and 2003.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{year + site + trees} 85.579 0.000 0.13230 5 

Density{year + site} 85.579 0.001 0.13226 4 

Density{year + site + treatment} 85.888 0.309 0.11334 5 

Density{year + site + woody debris + treatment} 86.575 0.997 0.08038 6 

Density{year + site + trees + woody debris} 86.694 1.115 0.07576 6 

Density{year + site + trees + herbaceous} 87.556 1.977 0.04922 6 

Density{year + site + herbaceous} 87.723 2.144 0.04529 5 

Density{year + site + woody debris} 87.877 2.298 0.04193 5 

Density{year + site + trees + treatment} 88.121 2.543 0.03711 6 

Density{year + site + trees + herbaceous + woody debris} 88.202 2.623 0.03564 7 

Density{year + site + herbaceous + treatment} 88.263 2.684 0.03457 6 

Density{year + site + herbaceous + woody debris + treatment} 88.578 2.999 0.02953 7 

Density{year} 88.815 3.236 0.02624 2 

Density{year + site + trees + woody debris + treatment} 88.999 3.420 0.02393 7 

Density{year + herbaceous} 89.502 3.924 0.01860 3 

Density{year + herbaceous + treatment} 89.854 4.275 0.01560 4 

continued 
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Table 2.3.  continued     
 

Model AICc ∆AICc Weight K 

Density{year + site + herbaceous + woody debris} 90.024 4.445 0.01433 6 

Density{year + trees + herbaceous} 90.163 4.585 0.01337 4 

Density{year + site + trees + herbaceous + treatment} 90.195 4.616 0.01316 7 

Density{year + site + trees + herbaceous + woody debris + treatment} 90.459 4.880 0.01153 8 
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Table 2.4.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on deer mouse densities at the Fort Valley study area, northern Arizona, 1998 and 2003. 
   

Variable Relative Importance  Level Effect SE 95% CI 

Intercept 1.00000 - 14.828 2.631 (9.671, 19.985) 

Year 1.00000 Difference 1998, 2003 -10.381 1.401 (-13.128, -7.635) 

Site  0.87028 Difference Site 1, Site 2 0.222 1.014 (-1.765, 2.209) 

  Difference Site 1, Site 3 -1.859 1.194 (-4.200, 0.482) 

Trees 0.41685 Continuous -0.234 0.385 (-0.988, 0.519) 

Herbaceous 0.30229 Continuous -0.140 0.357 (-0.840, 0.561) 

Woody debris 0.34465 Continuous 0.016 0.030 (-0.044, 0.076) 

Treatment 0.38554 Treated 0.716 1.280 (-1.794, 3.226) 
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Table 2.5.  Model selection results from weighted regression analysis of gray-collared chipmunk densities at the Fort Valley study area, northern Arizona, 1998 and 
2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike 
weight.  
 

Model AICc ∆AICc Weight K 

Density{year + site + trees + woody debris + treatment} 45.404 0.000 0.29165 7 

Density{year + site + trees + herbaceous + woody debris + treatment} 45.654 0.250 0.25740 8 

Density{year + trees + herbaceous + woody debris + treatment} 46.837 1.433 0.14248 6 

Density{year + trees + woody debris + treatment} 47.129 1.726 0.12307 5 

Density{year + site + trees + herbaceous + woody debris} 48.250 2.846 0.07027 7 

Density{year + site + trees + woody debris} 48.602 3.199 0.05892 6 

Density{year + trees + herbaceous + woody debris} 50.908 5.504 0.01860 5 

Density{year + site + woody debris} 51.204 5.800 0.01605 5 
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Table 2.6.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on gray-collared chipmunk densities at the Fort Valley study area, northern Arizona, 1998 and 2003. 
   

Variable Relative Importance  Level Effect SE 95% CI 

Intercept 1.00000 - 2.895 1.269 (0.407, 5.383) 

Year 1.00000 Difference 1998, 2003 -0.344 0.377 (-1.083, 0.396) 

Site  0.70663 Difference Site 1, Site 2 0.197 0.306 (-0.403, 0.796) 

  Difference Site 1, Site 3 0.417 0.331 (-0.232, 1.066) 

Trees 0.96911 Continuous -0.516 0.204 (-0.915, -0.117) 

Herbaceous 0.49612 Continuous -0.144 0.193 (-0.522, 0.234) 

Woody debris 0.99802 Continuous 0.054 0.014 (0.026, 0.081) 

Treatment 0.82304 Treated -1.352 0.879 (-3.074, 0.370) 
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Table 2.7.  Model selection results from weighted regression analysis of golden-mantled ground squirrel densities at the Fort Valley study area, northern Arizona, 
1998 and 2003.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of 
the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{year} 11.140 0.000 0.14248 2 

Density{year + site} 11.615 0.474 0.11239 4 

Density{year + woody debris} 12.626 1.486 0.06778 3 

Density{year + trees + woody debris} 12.713 1.573 0.06490 4 

Density{year + trees} 12.811 1.671 0.06178 3 

Density{year + herbaceous} 13.302 2.162 0.04834 3 

Density{year + treatment} 13.437 2.297 0.04518 3 

Density{year + site + woody debris} 13.589 2.449 0.04188 5 

Density{year + site + trees} 13.690 2.550 0.03982 5 

Density{year + site + treatment} 14.008 2.868 0.03396 5 

Density{year + trees + treatment} 14.025 2.885 0.03368 4 

Density{year + site + herbaceous} 14.084 2.943 0.03271 5 

Density{year + trees + woody debris + treatment} 14.333 3.193 0.02887 5 

Density{year + site + trees + woody debris} 14.588 3.448 0.02541 6 

Density{year + woody debris + treatment} 14.633 3.493 0.02485 4 

continued 
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Table 2.7.  continued     
 

Model AICc ∆AICc Weight K 

Density{year + herbaceous + woody debris} 14.698 3.558 0.02405 4 

Density{year +trees + herbaceous + woody debris} 14.923 3.783 0.02149 5 

Density{year + trees + herbaceous} 15.176 4.036 0.01894 4 

Density{year + site + woody debris + treatment} 15.611 4.470 0.01524 6 

Density{year + herbaceous + treatment} 15.682 4.541 0.01471 4 

Density{year + site + trees + herbaceous} 15.856 4.716 0.01348 6 

Density{year + site + herbaceous + woody debris} 15.944 4.803 0.01290 6 

Density{year + site + trees + treatment} 16.030 4.890 0.01236 6 

Density{year + trees + herbaceous + treatment} 16.418 5.278 0.01018 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 107

Table 2.8.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on golden-mantled ground squirrel densities at the Fort Valley study area, northern Arizona, 1998 and 2003. 
   

Variable Relative Importance  Level Effect SE 95% CI 

Intercept 1.00000 - 0.198 0.235 (-0.262, 0.659) 

Year 1.00000 Difference 1998, 2003 -0.170 0.137 (-0.438, 0.098) 

Site  0.37557 Difference Site 1, Site 2 0.024 0.060 (-0.094, 0.142) 

  Difference Site 1, Site 3 0.104 0.150 (-0.190, 0.398) 

Trees 0.36257 Continuous -0.025 0.044 (-0.110, 0.061) 

Herbaceous 0.24203 Continuous -0.001 0.019 (-0.039, 0.037) 

Woody debris 0.36664 Continuous 0.002 0.004 (-0.005, 0.009) 

Treatment 0.26325 Treated -0.019 0.084 (-0.182, 0.145) 
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Table 2.9.  Model selection results from weighted regression analysis of Mexican woodrat densities at the Fort Valley study area, northern Arizona, 1998 and 2003.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{year} 40.500 0.000 0.10623 2 

Density{year + woody debris} 40.655 0.155 0.09831 3 

Density{year + trees + woody debris} 40.832 0.332 0.09000 3 

Density{year + site + herbaceous + woody debris} 41.365 0.865 0.06893 6 

Density{year + site} 41.403 0.903 0.06764 4 

Density{year + site + woody debris} 41.771 1.271 0.05626 5 

Density{year + woody debris + treatment} 41.970 1.470 0.05095 4 

Density{year + trees} 42.139 1.639 0.04681 3 

Density{year + herbaceous + woody debris} 42.762 2.262 0.03429 4 

Density{year + herbaceous} 42.799 2.299 0.03366 3 

Density{year + treatment} 42.800 2.300 0.03364 3 

Density{year + trees + herbaceous + woody debris} 43.296 2.796 0.02625 5 

Density{year + trees + woody debris + treatment} 43.302 2.802 0.02618 5 

Density{year + site + herbaceous} 43.417 2.917 0.02471 5 

Density{year + site + woody debris + treatment} 43.428 2.928 0.02457 6 

Density{year + site + trees + woody debris} 43.591 3.091 0.02265 6 

continued 
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Table 2.9.  continued     
 

Model AICc ∆AICc Weight K 

Density{year + trees + treatment} 43.661 3.161 0.02188 4 

Density{year + site + trees} 43.869 3.369 0.01971 5 

Density{year + site + treatment} 43.882 3.382 0.01959 5 

Density{year + site + trees + herbaceous + woody debris} 43.918 3.418 0.01923 7 

Density{year + site + herbaceous + woody debris + treatment} 44.048 3.547 0.01803 7 

Density{year + trees + herbaceous} 44.379 3.879 0.01528 4 

Density{year + herbaceous + woody debris + treatment} 44.453 3.952 0.01472 5 

Density{year + herbaceous + treatment} 45.189 4.689 0.01019 4 
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Table 2.10.  Estimated relative importance values, model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression 
analysis of treatment effects on Mexican woodrat densities at the Fort Valley study area, northern Arizona, 1998 and 2003. 
   

Variable Relative Importance  Level Effect SE 95% CI 

Intercept 1.00000 - 0.152 0.220 (-0.278, 0.583) 

Year 1.00000 Difference 1998, 2003 -0.239 0.148 (-0.529, 0.052) 

Site  0.37806 Difference Site 1, Site 2 0.071 0.108 (-0.140, 0.282) 

  Difference Site 1, Site 3 0.071 0.105 (-0.136, 0.278) 

Trees 0.32907 Continuous -0.013 0.028 (-0.068, 0.042) 

Herbaceous 0.30335 Continuous 0.019 0.044 (-0.067, 0.104) 

Woody debris 0.56907 Continuous 0.005 0.006 (-0.006, 0.016) 

Treatment 0.26211 Treated 0.009 0.078 (-0.144, 0.161) 
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Figure 2.1.  Density estimates and 95% confidence intervals for deer mice at the Fort Valley study area, northern Arizona.  Bars within experimental unit groupings 
represent years 1998, 1999, 2001, 2002, and 2003 from left to right.  Black bars represent thinned experimental units and striped bars represent thinned and burned 
experimental units.    
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Figure 2.2.  Density estimates and 95% confidence intervals for gray-collared chipmunks at the Fort Valley study area, northern Arizona.  Bars within experimental 
unit groupings represent years 1998, 1999, 2001, 2002 and 2003 from left to right.  Black bars represent thinned experimental units and striped bars represent 
thinned and burned experimental units.    
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Figure 2.3.  Density estimates and 95% confidence intervals for golden-mantled ground squirrels at the Fort Valley study area, northern Arizona.  Bars within 
experimental unit groupings represent years 1998, 1999, 2001, 2002 and 2003 from left to right.  Black bars represent thinned experimental units and striped bars 
represent thinned and burned experimental units.    
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Figure 2.4.  Density estimates and 95% confidence intervals for Mexican woodrats at the Fort Valley study area, northern Arizona.  Bars within experimental unit 
groupings represent years 1998, 1999, 2001, 2002 and 2003 from left to right.  Black bars represent thinned experimental units and striped bars represent thinned 
and burned experimental units.    
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APPENDIX 2A:   

MODEL SELECTION RESULTS FROM MODELING OF CAPTURE PROBABILITIES AND MEAN MAXIMUM DISTANCE MOVED FOR 

SMALL MAMMAL SPECIES CAPTURED ON THE FORT VALLEY STUDY AREA, NORTHERN ARIZONA, USA 
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Table 2A.1.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Fort Valley Experimental Forest, Arizona.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (a.m. + age + year + unit) = c (additive)} 7000.559 0.000 0.37745 19 

{p (a.m. + age + year + unit + fire) = c (additive)} 7001.796 1.237 0.20337 20 

{p (a.m. + age + year + unit + trees) = c (additive)} 7002.127 1.568 0.17233 20 

{p (a.m. + age + year + unit + trees + fire + treatment * year) = c (additive)} 7002.292 1.733 0.15871 24 

{p (a.m. + age + year + unit + trees + fire) = c (additive)} 7003.724 3.165 0.07756 21 
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Table 2A.2.  Initial capture (p) and recapture probability (c) models and model selection results for gray-collared chipmunks at the Fort Valley Experimental Forest, 
Arizona.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + year + unit + stems + fire + treatment * year) = c (additive)} 4241.424 0.000 0.64371 24 

{p (a.m. + year + unit + trees + fire + treatment * year) = c (additive)} 4245.173 3.749 0.09876 23 

{p (a.m. + age + unit) = c (additive)} 4246.240 4.816 0.05794 15 

{p (a.m. + age + year + unit + fire) = c (additive)} 4246.682 5.258 0.04644 20 

{p (a.m. + age + year + unit) = c (additive)} 4247.220 5.796 0.03550 19 

{p (a.m. + age + unit + fire) = c (additive)} 4247.466 6.042 0.03139 16 

{p (a.m. + age + unit + trees) = c (additive)} 4248.172 6.748 0.02205 16 

{p (a.m. + age + year + unit + trees + fire) = c (additive)} 4248.688 7.264 0.01704 21 

{p (a.m. + age + year + unit + trees) = c (additive)} 4248.801 7.377 0.01610 20 

{p (a.m. + age + unit + trees + fire) = c (additive)} 4249.457 8.033 0.01160 17 
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Table 2A.3.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Fort Valley 
Experimental Forest, Arizona.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc 
(∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m. + age) = c (additive)} 1172.222 0.000 0.36126 4 

{p (a.m. + age + trees) = c (additive)} 1172.767 0.545 0.27516 5 

{p (a.m. + age + fire) = c (additive)} 1173.966 1.744 0.15104 5 

{p (a.m. + age + trees + fire) = c (additive)} 1174.755 2.533 0.10182 6 

{p (a.m. + age + year) = c (additive)} 1177.273 5.051 0.02890 8 

{p (a.m.) = c (additive)} 1177.905 5.683 0.02107 3 

{p (a.m. + age + year + fire) = c (additive)} 1178.752 6.530 0.01380 9 

{p (a.m. + trees) = c (additive)} 1178.904 6.682 0.01279 4 

{p (a.m. + age + year + trees) = c (additive)} 1179.269 7.046 0.01066 9 
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Table 2A.4.  Initial capture (p) and recapture probability (c) models and model selection results for Mexican woodrats at the Fort Valley Experimental Forest, 
Arizona.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m. + year) = c (additive)} 521.299 0.000 0.15285 7 

{p (a.m. + fire) = c (additive)} 521.527 0.227 0.13642 4 

{p (a.m. + age + fire) = c (additive)} 521.608 0.309 0.13100 5 

{p (a.m. + age + year) = c (additive)} 522.143 0.844 0.10023 8 

{p (a.m.) = c (additive)} 522.171 0.872 0.09886 3 

{p (a.m. + age) = c (additive)} 522.414 1.114 0.08756 4 

{p (a.m. + trees + fire) = c (additive)} 523.060 1.761 0.06338 5 

{p (a.m. + age + trees + fire) = c (additive)} 523.189 1.889 0.05943 6 

{p (a.m. + year + trees) = c (additive)} 523.273 1.973 0.05698 8 

{p (a.m. + trees) = c (additive)} 523.919 2.619 0.04126 4 

{p (a.m. + age + year + trees) = c (additive)} 524.180 2.880 0.03621 9 

{p (a.m. + age + trees) = c (additive)} 524.202 2.902 0.03581 5 
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Table 2A.5.  Mean maximum distance moved models and model selection results for deer mice (n=536) at the Fort Valley Experimental Forest, Arizona.  Model 
selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{MMDM (constant)} 3450.976 0.000 0.51043 2 

{MMDM (fire)} 3452.312 1.336 0.26173 3 

{MMDM (trees)} 3452.989 2.013 0.18657 3 

{MMDM (year)} 3456.553 5.577 0.03140 6 
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Table 2A.6.  Mean maximum distance moved models and model selection results for gray-collared chipmunks (n=290) at the Fort Valley Experimental Forest, 
Arizona.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the 
Akaike weight.  
 
Model AICc ∆AICc Weight K 

{MMDM (treatment * year)} 2186.252 0.000 0.38972 7 

{MMDM (constant)} 2186.886 0.634 0.28385 2 

{MMDM (stems)} 2188.813 2.561 0.10828 3 

{MMDM (fire)} 2188.916 2.664 0.10285 3 

{MMDM (year)} 2188.954 2.702 0.10092 6 

{MMDM (unit)} 2192.852 6.600 0.01437 13 
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Table 2A.7.  Mean maximum distance moved models and model selection results for golden-mantled ground squirrels (n=79) at the Fort Valley Experimental 
Forest, Arizona.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of 
the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{MMDM (constant)} 598.542 0.000 0.48712 2 

{MMDM (trees)} 600.391 1.850 0.19317 3 

{MMDM (fire)} 600.493 1.952 0.18358 3 

{MMDM (year)} 601.091 2.550 0.13613 6 
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Table 2A.8.  Mean maximum distance moved models and model selection results for Mexican woodrats (n=37) at the Fort Valley Experimental Forest, Arizona.  
Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{MMDM (constant)} 194.211 0.000 0.38523 2 

{MMDM (fire)} 194.652 0.441 0.30897 3 

{MMDM (year)} 195.898 1.687 0.16571 6 

{MMDM (trees)} 196.234 2.023 0.14008 3 
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CHAPTER 3: 

SMALL MAMMAL RESPONSES TO FOREST FUEL REDUCTION: 

NATIONAL-SCALE RESULTS FROM THE FIRE AND FIRE SURROGATE PROGRAM 

 

INTRODUCTION 

Many United States (USA) forests that historically experienced frequent, low- to moderate-

severity fires have undergone reductions in fire frequency and changes in forest structure since Euro-

American settlement.  Causes include fire suppression, grazing, logging, farm abandonment in the 

southeast USA, and climatic variation (Dodge 1972, Kilgore and Taylor 1979, Bonnicksen and Stone 1982, 

Arno et al. 1995, Cowell 1998, Allen et al. 2002).  A result of decreased fire frequency is increased fuel 

loads, resulting in increased risk of high-severity wildfire and changes in the ecological function of forests 

(Covington and Moore 1994, Stephens 1998).  Among land managers and scientists, there is interest in 

developing and applying treatments to reduce forest fuels, but before widespread adoption of fuel reduction 

treatments, it is necessary to understand the potential effects of forest fuel reduction on forest ecology 

(Covington et al. 1997, Wagner et al. 2000, Block et al. 2001).   

Two primary types of fuel reduction treatments have been widely applied: prescribed fire and 

mechanical treatments (e.g., thinning).  Prescribed fire is thought to simulate the historical disturbance and 

fuel reduction process.  A common mechanical substitute for fire is “thinning from below” i.e., removing 

smaller trees whose lower branches carry fire into forest canopies, while retaining larger trees (Covington 

and Moore 1994, Arno et al. 1995).  Thinning is also frequently used in combination with prescribed fire to 

reduce fuel loads so that prescribed fire treatments are less severe (e.g., Covington et al. 1997; Fulé et al. 

2001a,b).  Prescribed fire, mechanical thinning, and combination treatments are effective in reducing forest 

fuels and fire risk (Martinson and Omi 2002, Pollet and Omi 2002).  However, the comparative ecological 

effects of these treatments are not known (P. Weatherspoon and J. McIver, US Forest Service, unpublished 

report).  It is important to evaluate the ecological impacts of these treatments, and to determine whether 
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mechanical treatments, or mechanical treatments in combination with prescribed fire, are ecologically 

appropriate surrogates for fire.   

To provide such information, the national Fire and Fire Surrogate (FFS) Program was conceived 

as a cooperative effort among federal land-management agencies, universities, and private organizations to 

investigate the relative impacts of fire and fire surrogate treatments on forest ecology and fire risk (P. 

Weatherspoon and J. McIver, US Forest Service, unpublished report).  The FFS experimental approach 

applies a similar study design and sampling scheme to 13 study areas across the USA, thereby allowing for 

both local and large-scale inferences.  Through the FFS study, researchers are monitoring treatment effects 

on several ecological response variables in the general areas of wildlife, vegetation, fuels and fire behavior, 

soils, entomology, and pathology. 

Because the FFS approach has been applied at a large number of spatially disjunct study areas, it 

is possible to draw conclusions about the generality of the effects of treatments through cross-study area 

analyses.  A primary emphasis of the original FFS study proposal was on providing such information (P. 

Weatherspoon and J. McIver, US Forest Service, unpublished report).  If impacts of treatments were found 

to be largely consistent across study areas, land managers’ abilities to predict the impacts of management 

actions would be strengthened.  Conversely, if impacts were found to be highly divergent, increased site-

specific analyses would be warranted before widespread adoption of particular management actions.    

Within the wildlife component of the FFS study, small mammal populations were identified as a 

response variable of interest (P. Weatherspoon and J. McIver, US Forest Service, unpublished report).  

Small mammal communities comprise an important component of the vertebrate biomass and biodiversity 

of forests, and they impact forest vegetation structure through consumption and dispersal of seeds and 

hypogeous fungi (Tevis 1956, Gashwiler 1970, Maser et al. 1978, Price and Jenkins 1986).  Furthermore, 

small mammals comprise an important food source for forest predators (e.g., Koehler and Hornocker 1977, 

Long and Smith 2000, Ward 2001).   

Here I examine initial (i.e., within 2 years post-treatment) small mammal responses to mechanical 

thinning, prescribed fire, and thinning/prescribed fire combination treatments across 8 FFS study areas 

distributed throughout the USA.  In a large-scale study such as this, significant variation in methods, 

treatments, and timing at different study areas is expected.  Capturing and explaining the full range of this 
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variation was not my focus.  My emphasis, instead, was on the examination of general responses of small 

mammal populations and communities to treatments.  Therefore, I focused on 2 primary research questions.  

First, do thinning, prescribed fire, and thinning/prescribed fire combination treatments differ in their effects 

on small mammal densities and total small mammal biomass?  Second, are results generally similar across 

study areas? 

METHODS 

Study Areas, Treatments, and Data Collection   

The FFS network was composed of 13 study areas in the USA, including 8 in the western USA 

(Arizona, California (3), Montana, New Mexico, Oregon, and Washington) and 5 in the eastern USA 

(Alabama, Florida, North Carolina, Ohio, and South Carolina).  Eight of these study areas provided data to 

the analyses herein.  The remaining 5 study areas either had very low numbers of small mammals or their 

data collection and analysis timeline did not permit participation.  It was necessary to assess the data set 

from each study area to determine whether and how much of the data set was appropriate for inclusion in 

these analyses.  Study areas included in the analyses spanned 5 western states (Arizona, California (2), 

Montana, New Mexico, and Oregon) and 2 eastern states (Alabama and Florida).     

 The study area design was established by the FFS national study proposal (P. Weatherspoon and 

J. McIver, US Forest Service, unpublished report).  The study areas were divided into experimental units; 

each unit was assigned to a treatment type (typically thin, prescribed burn, thin/prescribed burn 

combination, and control).  At certain study areas, the experimental units were grouped into blocks, or 

study sites, but this was not universally true.  There were at least 3 experimental units assigned to each 

treatment.  Treatments were designed and implemented by individual study area leaders, resulting in 

individual variation in methods used, including thinning methods and intensity, season of burning, etc.  In 

addition, certain study sites (primarily the eastern study sites) carried out additional treatments such as 

herbicide treatments or mowing.  These treatments were not included here – only mechanical removal of 

trees and prescribed fire treatments were included.  All sampling within the experimental units was keyed 

to a permanent grid system of sampling points, typically spaced 50 m apart, although in some cases, small 

mammal sampling occurred at a finer scale than the permanent sampling grid.  Small mammal sampling 

consisted of live-trapping and marking animals (mark-recapture) to allow for the estimation of population 
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abundance.  Detailed study area descriptions are provided in the FFS national study proposal (P. 

Weatherspoon and J. McIver, US Forest Service, unpublished report) and are available on the FFS website 

at http://www.fs.fed.us/ffs/.  A summary of study area activities is supplied in Table 3.1.    

The Gulf Coast study area (GCSA) was located in long-leaf pine (Pinus palustris) forest on the 

Auburn University Solon Dixon Forestry Center in southern Alabama.  The study area consisted of 15 

experimental units, 12 of which were included; an additional 3 experimental units were assigned to an 

herbicide and burn treatment and therefore were excluded.  Experimental units were not closely grouped 

into study sites.  Thinning was conducted during February-April 2002 and burning was conducted 

immediately after thinning during April-May 2002.  Slash was piled away from retained trees and left in 

the experimental units after thinning.  Experimental units consisted of 12.25-ha sampling grids surrounded 

by a 20-m buffer, resulting in a total treated area of approximately 15 ha.  Small mammals were trapped 

during July-August 2001 (pre-treatment) and July 2002 and 2003 (post-treatment).  Small mammal 

sampling occurred on a smaller scale than the permanent sampling grid, in 10 x 10-dimensional trapping 

grids with 10-m spacing between trapping points.  One large (7.6 x 8.9 x 22.9 cm) Sherman live-trap was 

placed at each trapping point.  Animals were marked with ear tags and/or toe-clipping.     

The Hungry Bob study area (HBSA) was located in the Blue Mountains of northeast Oregon on 

the Wallowa-Whitman National Forest, in mixed-conifer forest dominated by Douglas-fir (Pseudotsuga 

menziesii) and ponderosa pine (Pinus ponderosa).  The study area consisted of 16 experimental units, 15 of 

which were included in this analysis.  An additional control unit was omitted because the sampling points 

were arranged in a straight line, thus precluding the calculation of population density with the methods 

described below.  Experimental units were not grouped into study sites, and were highly variable in size 

and shape, and some units were composed of smaller subunits separated in space.  Thinning was conducted, 

before the FFS study commenced, in the fall of 1998 before pre-treatment small mammal data were 

collected; slash was scattered after thinning.  Prescribed burning was conducted in the fall of 2000.  Treated 

areas ranged in size from 8 to 66 ha, although the permanent sampling grids were much smaller than this, 

consisting of between 19 and 30 sampling points spaced ≥50 m apart.  Small mammal data were collected 

in the late summer of 2000 (mid-treatment) and 2001 (post-treatment).  Traps were placed at all permanent 
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sampling points, i.e., ≥50 m apart, with 1 large Sherman live-trap and 1 #201 (12.7 x 12.7 x 40.6 cm) 

Tomahawk live-trap at each sampling point.  Animals were marked by clipping fur in unique patterns. 

The Jemez Mountains study area (JMSA) was located west of Los Alamos, New Mexico, on the 

Santa Fe National Forest, in mixed-conifer forest dominated by ponderosa pine with lesser amounts of 

Douglas-fir, southwestern white pine (Pinus strobiformis), and aspen (Populus tremuloides).  While 3 study 

sites were initially identified, 1 study site was destroyed by a wildfire and no treatments were completed on 

a second during the initial phase of the study; therefore data presented here come from 1 study site.  

Thinning was completed on 1 of 4 experimental units on this study site during the winter of 2002-2003; 

slash was piled and/or scattered after thinning.  Prescribed burning was not completed at this study area by 

2005.  Experimental units were 6.25 ha, with a 50-m buffer, resulting in a total area of 12.25 ha.  Pre-

treatment small mammal data were collected in 2001 and 2002; post-treatment data were collected in 2003.  

In 2001, small mammal sampling was conducted at all permanent sampling points, which were arranged in 

6 x 6-dimensional grids with 50 m between points (i.e., 6.25 ha).  In 2002-2003, trapping intensity was 

increased by adding additional trapping points to decrease trap spacing to 25 m.  Two sizes of Sherman 

live-traps were used, with large traps at every trapping point and extra-large traps (10.2 x 11.4 x 38.1 cm) at 

every other trapping point.  All captured animals were individually marked with ear tags. 

The Lubrecht Forest study area (LFSA) was located on the University of Montana’s Lubrecht 

Forest in western Montana on mixed-conifer forest dominated by ponderosa pine and Douglas-fir.  

Experimental units were arranged in 3 study sites with 4 experimental units per site.  Thinning was 

completed in January-March 2001; slash was scattered after thinning.  Prescribed burning was completed in 

May-June 2002.  Experimental units were 6.25 ha, with an approximately 50-m buffer, resulting in a total 

treated area of approximately 12.25 ha.  Small mammal sampling was conducted in July-August 2000 (pre-

treatment) and 2002 (post-treatment) on smaller trapping grids centered within the experimental units (7 x 

7-dimensional grids with 25-m spacing).  One large Sherman live-trap was placed at every trapping point 

and animals were individually marked with ear tags and/or toe-clipping. 

The Myakka River study area (MRSA) was located on the Myakka River State Park in southwest 

Florida on forest dominated by longleaf pine and slash pine (Pinus elliottii).  Sixteen experimental units 

were arranged in 3 study sites, but data from only 4 experimental units (2 at each of 2 study sites) were 
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used here.  Treatments included burning, mowing, and chopping vegetation; only experimental units treated 

with prescribed burns were included.  Furthermore, an escaped fire and flooding precluded use of some 

experimental units.  Experimental units were approximately 6.25 ha with a 50-m buffer, resulting in a total 

treated area of approximately 12.25 ha.  Burning of 1 unit at site 1 occurred in August of 2001, burning of 

both units at site 2 occurred in July of 2000.  Experimental units at site 1 were sampled for small mammals 

in June-July 2000 and 2002.  Experimental units at site 2 were sampled for small mammals in June-July 

2000 and 2001.  One large or extra-large kangaroo rat (7.6 x 9.5 x 30.5) Sherman live-trap was placed at 

each permanent sampling point, in 6 x 6-dimensional grids with 50-m spacing between points.  Animals 

were marked by clipping fur in unique patterns.             

The Southern Cascades study area (SCSA) was located on the Klamath National Forest in 

northern California on mixed-conifer forest dominated by ponderosa pine and Douglas-fir.  The area 

consisted of 12 experimental units that were not grouped into study sites.  Thinning was conducted in the 

fall of 1998 (1 thin/burn unit, 1 thin only unit), the summer of 1999 (2 thin only units, 1 thin/burn unit), and 

the fall of 1999 (1 thin/burn unit), before pre-treatment small mammal data were collected; slash was 

scattered after thinning.  Prescribed burning was conducted in the fall of 2001 (3 thin/burn units) and fall of 

2002 (3 burn only units).  Experimental units were 6.25 ha, with a 50-m buffer, for a total treated area of 

approximately 12.25 ha.  Small mammal trapping was conducted in May-August 2001 (mid-treatment) and 

2003 (post-treatment).  One extra-large kangaroo rat Sherman live-trap and 1 #201 Tomahawk live-trap 

were placed at each permanent sampling point, which were arranged in 6 x 6-dimensional grids with 50-m 

spacing between points.  Animals were marked by clipping fur in unique patterns.          

The Sequoia National Park study area (SNSA) was located on the Sequoia National Park in east-

central California, in mixed-conifer forest dominated by ponderosa pine, sugar pine (Pinus lambertiana) 

and white fir (Abies concolor).  The study area consisted of 9 experimental units that were not grouped into 

study sites.  The treatments consisted of spring burning and fall burning; thinning was not implemented on 

this National Park Service study area.  The 2 burning treatments were combined in this analysis.  Fall burns 

were conducted in the fall of 2001, spring burns were conducted in the spring of 2002.  Small mammal 

sampling was conducted from June-September in 2001 (pre-treatment), 2002 (post-treatment, no spring 

burn experimental units trapped), and 2003 (post-treatment).  Experimental units were irregularly shaped, 
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between 15 and 20 ha in size, including a 50-m buffer between the permanent sampling grid and the edge 

of the treated area.  Small mammal trapping was conducted at all 36 permanent sampling points in 

experimental units with 50-m trap spacing on the outer portion of sampling grids, but on the interior of the 

sampling grids, trap spacing was decreased to 25 m.  Extra-large kangaroo rat Sherman live-traps were 

placed at all trapping points, and animals were marked with ear tags.                 

The Southwest Plateau study area (SPSA) was located in north-central Arizona on ponderosa pine 

forest.  Three study sites comprised the study area, with 2 on the Coconino National Forest and 1 on the 

Kaibab National Forest.  Thinning was completed on 2 of the 4 experimental units on all 3 replicate study 

sites during the winter of 2002-2003; slash was piled after thinning.  Prescribed burning was not completed 

at the SPSA before data collection for these analyses was completed.  Experimental units were 

approximately 6.25 ha in size, with an additional 50-m buffer, resulting in a total treated area of 

approximately 12.25 ha.  Pre-treatment data were collected in July 2000, 2001, and 2002; post-treatment 

data were collected in July 2003.  In 2000, small mammal sampling was conducted at all permanent 

sampling points, which were arranged generally in 6 x 6-dimensional grids, but sometimes varied slightly 

from that pattern, with 50-m spacing between points.  In 2002-2003, trapping intensity was increased by 

adding additional trapping points to decrease trap spacing to 25 m.  Two sizes of Sherman live-traps were 

used, with large traps at every trapping point and extra-large traps at every other trapping point.  All 

captured animals were individually marked with ear tags. 

 Data Analysis        

The data analysis took place in 3 steps.  First, I estimated abundance for each species each year in 

each experimental unit, based on the mark-recapture data.  Second, I converted abundance estimates to 

density estimates by dividing abundance by trapping area.  Finally, I conducted weighted least-squares 

regression analyses to examine the effects of treatments on small mammal densities and total small 

mammal biomass.  

Throughout the analysis, I employed an information-theoretic philosophy of model selection and 

multi-model inference (Burnham and Anderson 2002).  Tools employed included model selection based on 

Akaike’s Information Criterion (AIC; Akaike 1973) corrected for sample size (AICc; Hurvich and Tsai 
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1989) and model-averaging based on Akaike weights (Burnham and Anderson 2002).  At each step in the 

analysis, statistical model sets were specified a priori, to strengthen inference (Anderson et al. 2001). 

Abundance Estimation.—The focus of abundance estimation, using mark-recapture techniques, is 

on the estimation of detection probabilities to correct counts for animals not sampled by the capture 

process.  Detection probabilities may be highly dynamic over space and time (Nichols 1992, Anderson 

2001) and may also be impacted by habitat modifications (Chapter 1, Chapter 2).  Therefore, reliance on 

index values of relative abundance to evaluate population responses to treatments will result in unreliable 

inference.  I used the conditional likelihood closed model (Huggins 1989, 1991) to model detection 

probabilities and estimate abundance.  The conditional likelihood approach allows for individual 

heterogeneity, behavioral response to capture, and time effects on capture probabilities (Model Mtbh; Otis et 

al. 1978), and has previously been used to estimate abundance of small mammals (Converse et al. 2004, 

Chapter 1, Chapter 2).  The conditional likelihood model generates estimates of initial capture rates (pi, i = 

1, …, t) and recapture rates (ci, i = 2, …, t) for t occasions based on animal encounter histories and uses 

these rates to generate estimates of abundance.  This model is preferred because it allows for the inclusion 

of individual covariates, e.g., age, to model individual heterogeneity in capture probabilities (White 2002) 

and has favorable numerical properties when most of the animals are captured in a sampled area (personal 

observation).  The conditional likelihood model estimates abundance, based on capture rates, as  
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where 1+tM  is the number of unique individuals marked on a grid during t trapping occasions, i.e., the 

minimum known population size, and pt is the estimate of initial capture rate for occasion t. 

Abundance estimation was carried out for each species at a study area of which at least 10 

individuals were captured.  All data for a given species at a given study area were combined into one large 

analysis to facilitate efficient estimation of detection probabilities and hence abundance; abundance 

estimates were obtained on each experimental unit each year by grouping captured animals accordingly.  

Variables that might impact detection probabilities were identified, and model sets were devised wherein 

models of detection probabilities were based on various combinations of the variables of interest.  For 

example, animals on burned experimental units may have a different capture probability than animals on 
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control experimental units, thus burning would be included as a variable in a subset of models of detection 

probability.  Different model sets were devised for each study area to take into account the unique sampling 

conditions at each.  Effort was also made to keep the model sets relatively small (maximum 80 models), as 

recommended by Burnham and Anderson (2002).  Model sets were devised a priori, based on consultations 

with researchers who collected data, to integrate study area-specific details of trapping and treatment 

conditions.  Variables included in abundance models are summarized by study area in Table 3.2.   

Based on previous analyses (Chapter 1, Chapter 2) indicating the importance of behavioral 

responses to capture in modeling small mammal detection probabilities, I generally considered behavioral 

responses to capture in all abundance models, unless models did not perform well (i.e., unstable abundance 

estimates, inestimable detection probabilities).  In these cases, behavior was treated as a variable that could 

be included or not (HBSA, SNSA).  A behavior effect was not estimable for cotton mice and cotton rats at 

the MRSA, nor for long-tailed voles or northern flying squirrels at the SNSA, so behavior was deleted from 

the model sets for these species. 

A challenge in valid estimation of animal abundance is the proper modeling of individual 

heterogeneity in capture probabilities (Otis et al. 1978, Williams et al. 2002).  I used 2 approaches to 

account for individual heterogeneity.  The first was age of individual animals.  Animals were classified by 

researchers at each study area as either adults or subadults based on mass and/or external evidence of 

reproductive status (McCravy and Rose 1992).  When age of individual animals did not perform well in the 

models, I used mixture models to account for heterogeneity in capture probabilities (Pledger 2000).  Larger 

amounts of heterogeneity were evident when trap spacing was larger, so, for example, at the HBSA and the 

SCSA, initial model runs demonstrated that heterogeneity was so great that abundance estimates were not 

reliable (e.g., estimates were orders of magnitude larger than estimates in other models). 

Estimation of abundance was conducted in Program MARK 3.2 (White and Burnham 1999).  I ran 

the entire specified model set for each species at each study area, and then deleted any models where 

estimates were not identifiable or where the models themselves were logically nonsensical (e.g., an age 

effect if all captured individuals of a species were adults).  I then model-averaged the abundance estimates 

and variance-covariance matrices to account for model selection uncertainty.  I based model-averaging on 
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Akaike weights; model-averaged estimates were computed based on Burnham and Anderson (2002) and 

model-averaged variance-covariance matrices were computed based on Burnham and Anderson (2004).   

Densities, Biomass, and Variance-Covariance Matrices.—Density was calculated as the 

abundance of a given species divided by the area of the trapping grid in each experimental unit.  Generally, 

density estimation in mark-recapture studies proceeds by estimating effective trapping area, computed as 

the area of the trapping grid expanded by the area of an additional buffer strip of width W.  Methods to 

estimate buffer strip width (Wilson and Anderson 1985a) or newer methods in which density is calculated 

based on the spatial arrangement of traps used by animals (Efford 2004) were not feasible in this case 

because of the irregular shape of some trapping grids (see Discussion and Figure 1).  Therefore, I calculated 

a naïve density estimate (Wilson and Anderson 1985a) by drawing a convex polygon (i.e., all outer angles 

≥180°) around all points in the trapping grid.  The convex polygon area was necessary because some 

trapping grids were irregularly shaped, i.e., were not rectangular (at the HBSA, MRSA, SNSA, and SPSA).   

Variance-covariance matrices of the density estimates and total biomass estimates were necessary 

for the weighted regression analysis.  These matrices were computed by delta method transformations of 

the variance-covariance matrices of the abundance estimates for each species provided by Program MARK 

(Seber 2002).  Weighted analysis cannot be conducted with variances of 0 because the variance-covariance 

matrix is singular.  Variances of 0 occurred in the abundance variance-covariance matrix for a species when 

no animals of that species were caught on a given experimental unit in a given year.  In order to provide 

positive variances in these cases, I fit a linear regression (PROC REG; SAS Institute 2003) of the natural 

log of positive variances against their corresponding density estimates and determined the regression 

intercept (Franklin 1997).  The exponential of the regression intercept then served as the variance for the 0 

density estimates.       

Analysis of Treatment Effects.—The analysis of treatment effects was conducted under a 

weighted least-squares regression analysis (Draper and Smith 1998) in PROC IML (SAS Institute 2003).  A 

traditional (i.e., unweighted) regression analysis was inappropriate because of the sampling covariances 

between the density estimates that were induced by the abundance estimation procedure.  The 

computational details, including effect size and variance estimation and computation of AICc, are provided 
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in Chapter 1.  Based on the computed AICc for each model, I computed model-averaged effect sizes and 

standard errors for each variable (Burnham and Anderson 2002).   

I specified multiple a priori models describing predicted responses to treatments.  I considered 4 

structures on treatment effects – by category (thin, burn, thin/burn) or not (treatment), and nested within 

study area or not.  I additionally considered 2 alternative blocking structures – by study area or by year 

nested within study area.  I did not consider year without nesting it within study area because the study 

areas were far enough apart that high temporal autocorrelation was not expected.  I considered a total of 12 

structural models in each analysis.        

Because the focus was on cross-study area effects, I limited analyses to taxa that spanned multiple 

study areas.  I adopted the a priori rule that a species had to appear on at least 3 study areas and have a 

minimum of 100 total individuals captured to warrant an individual analysis.  This resulted in 3 species-

level response variables: golden-mantled ground squirrel (Spermophilus lateralis) density, yellow-pine 

chipmunk (Tamias amoenus) density, and deer mouse (Peromyscus maniculatus) density.  I further 

considered genus-level response variables, including all chipmunk (Tamias) species and all Peromyscus 

spp.  Therefore, I was able to examine responses of the dominant taxa in many western forests with 

historically short-interval fire regimes (i.e., lower elevation forests), including deer mice and chipmunks, as 

well as one of the dominant taxa in forests throughout the US, Peromyscus.  While the golden-mantled 

ground squirrel was not dominant in the capture data from any of the study areas, it was common enough 

across the western study areas to support an individual analysis.     

As an overall community metric, I considered total small mammal biomass.  For the analysis of 

total biomass, I used minimum adult mass, in grams, as a multiplier to convert density estimates to biomass 

estimates, then summed the total estimated biomass over all species at each study area.  I determined 

minimum adult masses from a combination of literature sources (Hamilton and Whitaker 1979, Jameson 

and Peeters 1988, Fitzgerald et al. 1994, Hilton and Best 1993, Whitaker 1996) and judgments based on 

discussions with study area researchers and examination of data sets.  Masses used to compute biomass are 

provided in Table 3.3.     

RESULTS 
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 There were 6,068 individuals of 19 species captured on the 8 study areas (Table 3.3).  The most 

wide-ranging species was the deer mouse, which was caught on all 6 of the western study areas and was, in 

all but 1 case (SCSA) the most commonly captured species on the western study areas.  The most widely 

ranging genus, Peromyscus, was captured on all 8 study areas, including deer mice in the west and cotton 

mice (P. gossypinus) in the east.  The second most widely ranging genus was Tamias (chipmunks), of 

which at least 1 species occurred at all 6 western study areas.  The eastern chipmunk (T. striatus) was also 

observed at the GCSA, but its capture numbers (3 individuals) were too small for abundance analysis.  

Only one chipmunk species, the yellow-pine chipmunk (T. amoenus) was caught at more than 1 study area.  

The golden-mantled ground squirrel was the only other widely distributed species, caught at 4 western 

study areas.  Three species, including long-tailed voles (Microtus longicaudus), Mexican woodrats 

(Neotoma mexicana), and brush mice (P. boylii) were caught at 2 study areas, but all were caught in small 

numbers.  Because of the small capture numbers, and because of difficulties in distinguishing amongst 

Peromyscus spp., brush mice were combined with deer mice at the study areas where both were caught. 

Modeling of detection probabilities for abundance estimation indicated that detection probabilities 

varied in different times, areas, and conditions, including over treatments (Appendix 3A).  Populations for 

which a thinning and/or prescribed burning effect appeared in the top-ranked model of detection 

probabilities included golden mice (Ochrotomys nuttalli) and cotton mice (Peromyscus gossypinus) at the 

GCSA; least chipmunks (Tamias minimus) at the JMSA; southern red-backed voles (Cleithrionomys 

gapperi), deer mice, and yellow-pine chipmunks at the LFSA; golden-mantled ground squirrels and yellow-

pine chipmunks at the SCSA; deer mice, golden-mantled ground squirrels, and lodgepole chipmunks (T. 

speciosus) at the SNSA; and gray-collared chipmunks (T. cinereicollis) at the SPSA.   

For analysis of the species-level response variables (golden-mantled ground squirrels, yellow-pine 

chipmunks, and deer mice), as well as the genus-level response variables (Tamias and Peromyscus), the 

top-ranked model (as determined by AICc) included, in all cases, a treatment effect that was specific to both 

treatment category and study area, i.e., treatment effects were different by treatment type and study area 

and in all cases the top model received strong support.  The top model for total biomass, however, included 

a treatment effect that was not specific to either treatment category or study area, i.e., all treatment types 

had the same effect, and the effect was the same across study areas.      
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Analysis of golden-mantled ground squirrel densities resulted in a top-ranked model, [Density 

{treatment category (study area)}], with 82% of the model weight (Table 3.4).  No clear pattern was 

evident in the 3 study area burn effects (2 positive regression coefficients, 1 negative), or 3 study area thin 

effects (2 negative regression coefficients, 1 positive), though both of the 2 study area thin/burn effects 

were positive (Table 3.5).  Estimated 95% confidence intervals on the treatment effects included 0 in all 

cases.   

 Modeling results for yellow-pine chipmunk densities indicated that the top-ranked model was 

[Density {study area + treatment category (study area)}], with 69% of the model weight (Table 3.6).  Two 

of 3 regression coefficients for study area burn effects were negative, while 1 was positive; similarly for the 

3 study area thin effects and 3 study area thin/burn effects (Table 3.7).  In all but one case (positive LFSA 

thin effect), 95% confidence intervals included 0.   

Analysis of deer mouse densities indicated that the top model was [Density {year (study area) + 

treatment category (study area)}] with 100% of the weight (Table 3.8).  Three of 4 study area burn effects 

were positive, as were 3 of 5 study area thin effects and 2 of 3 study area thin/burn effects (Table 3.9).  All 

95% confidence intervals included 0 with the exception of a positive burn effect at the LFSA and a positive 

thin effect at the JMSA. 

 The top-ranked model for all Tamias spp. was [Density {study area + treatment category (study 

area)}], with 99% of the model weight (Table 3.10).  Two of 4 regression coefficients for study area burn 

effects were positive; 4 of 5 regression coefficients for study area thin effects were positive; and 1 of 3 

study area thin/burn effects was positive (Table 3.11).  All 95% confidence intervals included 0 with the 

exception of 2 positive thin effects (JMSA and LFSA).   

The top-ranked model of Peromyscus spp. densities was [Density {year (study area) + treatment 

category (study area)}], with 98% of the weight (Table 3.12).  Five of 6 study area burn effects were 

positive, 4 of 6 study area thin effects were positive, and 3 of 4 study area thin/burn effects were positive 

(Table 3.13).  All 95% confidence intervals included 0 with the exception of positive burn effects at the 

GCSA and LFSA and positive thin effects at the GCSA and JMSA. 
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The top ranked model of total small mammal biomass was [Biomass {year (study area) + 

treatment}] with 76% of the model weight (Table 3.14).  The positive treatment effect had a 95% 

confidence interval that only marginally included 0 (Table 3.15).      

DISCUSSION 

Small Mammal Responses to Treatments 

The results of this cross-study area, multi-taxa analysis indicate that densities of individual taxa of 

small mammals have variable responses to different treatment types at different study areas.  The direction 

(positive or negative) of treatment effects was variable across study areas, even within a treatment type.  

Conversely, the best approximating model for total small mammal biomass was a simpler model, with a 

treatment effect that did not vary by study area or treatment type.  It is important to note, however, that high 

variances on estimates of total small mammal biomass probably caused the selection of a simpler 

approximating model for biomass, rather than estimated treatment effects that were highly precise and 

similar over treatment types and areas.       

Responses of small mammals to fuel reduction treatments are likely determined by responses of 

critical habitat components, including shrub and herbaceous vegetation and coarse woody debris.  

Understory vegetation, which provides a source of cover, as well as vegetation and seed food sources 

(Ahlgren 1966, Goodwin and Hungerford 1979, Kyle and Block 2000, Wilson and Carey 2000) and coarse 

woody debris, which provides nesting and travel cover and insect and fungal food sources (Hayes and 

Cross 1987, Graves et al. 1988, Loeb 1999, Bowman et al. 2000, Carey and Harrington 2001), have been 

shown to be important determinants of forest small mammal populations, and these components of small 

mammal habitat may have quite different responses to thinning and prescribed fire.  Thinning increases 

herbaceous cover by 1-2 growing seasons after treatment (Clary 1975, Covington et al. 1997), as does 

prescribed fire within the first few growing seasons after the disturbance (Bock and Bock 1983, Harris and 

Covington 1983, Oswald and Covington 1983, Oswald and Covington 1984), but vegetation response after 

fire is likely delayed by post-prescribed fire vegetation recovery.  Thinning is expected to increase coarse 

woody debris through slash deposits, while prescribed fire leads to short-term declines in coarse woody 

debris (Covington and Sackett 1984, Arno et al. 1995).  Combined thinning/prescribed burning treatments 
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have been shown to result in increased herbaceous vegetation and decreased coarse woody debris (Chapter 

2). 

Given potential differences in responses of habitat components, it is reasonable to expect that 

small mammals would respond differently by treatment type.  In addition, the individual taxa responses 

documented here indicate that treatment effects are quite variable within a treatment type at different study 

areas.  However, differences in timing and execution of treatments at different study areas are possible 

confounding factors.  For instance, climate variability at different sites in different years, or differences in 

treatment execution, such as whether slash was piled or scattered after thinning, may have caused some of 

the differences in study area effects.  Despite these complications, this study has documented greater 

variability in treatment responses than previous research.  For example, deer mouse populations have been 

thought to almost universally demonstrate positive responses to forest disturbance, including thinning 

operations (Wilson and Carey 2000, Carey and Wilson 2001, Suzuki and Hayes 2003, Chapter 1, Chapter 

2, but see Hadley and Wilson 2004).  Positive responses of deer mice have also been documented for both 

prescribed fire and wildfire (Tester 1965, Ahlgren 1966, Krefting and Ahlgren 1974, Bock and Bock 1983, 

Martell 1984, Kyle and Block 2000).  Similarly for chipmunks, positive responses to thinning have been 

documented for a number of species (Carey 2000, Wilson and Carey 2000, Carey 2001, Carey and Wilson 

2001, Sullivan et al. 2001, Hadley and Wilson 2004, Chapter 1, Chapter 2).  Less information is available 

on chipmunk responses to fire, but what information is available suggests negligible to negative responses 

(Chapter 1, Chapter 2).  The highly variable responses to treatments by golden-mantled ground squirrels 

documented in this study are one of the few examinations of impacts of forest management on this species 

(but see Chapter 2).     

One response variable examined here, total small mammal biomass, had consistent responses 

across treatment types and study areas.  This result is supported further by additional research (Goodwin 

and Hungerford 1979, Monthey and Soutiere 1985, Carey and Johnson 1995, Clough 1997, Wilson and 

Carey 2000, Carey and Harrington 2001) indicating that increases in habitat complexity result in overall 

positive responses by small mammal communities.  Any type of treatment that increases habitat 

complexity, i.e., by increasing herbaceous vegetation, may result in higher small mammal populations.  

However, while it is reasonable as a coarse prediction to expect that small mammals should respond 
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positively to any type of forest disturbance, there is almost certainly high variability in responses of total 

biomass to fuel reduction treatments.  

If treatment responses are highly variable, information allowing better prediction of the direction 

and magnitude of responses would be helpful in guiding the placement and extent of fuel reduction 

treatments.  There is some indication that pre-treatment conditions may impact the direction of small 

mammal responses to fuel reduction treatments.  In finer-scale analyses of treatment effects at the SPSA, 

responses of deer mice, gray-collared chipmunks and total small mammal biomass to thinning were shown 

to be positive on experimental units which, prior to treatment, were comprised of forests with densely-

packed small trees, whereas responses were negligible to negative on experimental units with pre-treatment 

forests composed of larger, more widely spaced trees, even though total tree basal area was similar across 

the experimental units (Chapter 1).  Differences in pre-treatment conditions across study areas may have 

had an important influence on the differences in treatment responses documented here.       

    Differences in responses by taxa across different study areas indicate that the ability of 

managers to predict responses of small mammal communities to fuel reduction treatments is currently 

limited.  Given this constraint, an adaptive management philosophy is probably warranted (Walters 1986), 

wherein management actions are conceived as experiments designed to reduce uncertainty about the effects 

of management on response variables of interest, at least in areas managed for small mammals, such as 

raptor foraging areas.  Focus should be placed on determining the pre-treatment conditions or other 

variables that impact responses of small mammals to treatments.   Once such information is available, 

careful site-specific analyses can be used to predict responses at specific sites (Brown et al. 2004).        

Experimental Design and Inference 

 A difficulty I faced in estimating small mammal densities in this study was in the estimation of 

effective trapping area, the area to which a mark-recapture-based estimate of abundance applies.  The 

approach used in similar analyses (Chapter 1, Chapter 2) was to estimate effective trapping area using 

model selection and the mean maximum distance moved method (Wilson and Anderson 1985a) in which a 

buffer strip, estimated from the mean of the maximum distance moved by animals on a trapping grid, is 

added to the area of the trapping grid.  These analyses have indicated that treatments can impact 

movements of animals and thus effective trapping area; therefore, the most robust estimates of treatment 
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effects will be based on empirical estimates of effective trapping area.  However, the shape and size of 

trapping grids on some of the experimental units included in this analysis were such that estimation of 

mean maximum distance moved was not feasible.  In particular, portions of some trapping grids at the 

HBSA were composed of a single line of traps (Figure 1).  Movements, and thus mean maximum distance 

moved, could not be reliably estimated in such a grid, and use of the area of the trapping grid itself to 

calculate density was not possible because a line has no area.  Therefore, the convex polygon method that I 

used to estimate the area of the trapping grid and thus calculate density was the most plausible, objective 

method available to complete this analysis.  In many cases (i.e., on rectangular grids), the convex polygon 

area was the same as the naïve area described by Wilson and Anderson (1985a).  Investigators interested in 

estimating small mammal densities or density-based treatment responses should use either trapping webs 

(Anderson et al. 1983, Wilson and Anderson 1985b) or large-dimension, regularly shaped (i.e, square or 

rectangular) trapping grids to facilitate the estimation of movement and thus effective trapping area by 

methods such as mean maximum distance moved (Wilson and Anderson 1985a) or to estimate density 

directly with the recently-developed method of Efford (2004).  The FFS study was not designed primarily 

for wildlife investigations; instead wildlife sampling was added to a design intended for vegetation and 

other types of investigations.  As Block et al. (2001) note, such a situation often results in compromised 

quality of wildlife investigations.  If movements were strongly impacted by treatments, then estimates of 

treatment effect size reported here may be biased.  Because I focus on patterns of treatment responses by 

treatment type and over space, rather than on estimation of treatment effect size, my inference should be 

less dependent on the importance of treatment effects on animal movements.      

A common concern of many wildlife researchers involved in the FFS program was the small size 

of the experimental units – total treated area was generally less than 13 ha, although some study areas (i.e., 

HBSA) had larger or smaller treated areas.  Future studies investigating small mammal responses to forest 

management treatments should attempt to increase the size of treated areas.  Overly small treatment areas 

result in a larger potential edge effect, where animals respond to the creation of a habitat edge induced by 

treatments rather than to the treatments themselves.  Possibly, edge effects were present in data sets 

included in this analysis, although a more detailed analysis of the data from the SPSA (Chapter 1) indicated 

that animals likely were responding to the treatments themselves rather than the induced edge on the 
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approximately 12.25 ha experimental units there.  Partnering with forest management agencies that are 

implementing large-scale fuel reduction treatments should provide researchers with opportunities to study 

responses on larger spatial scales.     

Furthermore, there is a need to assess ecological effects of fuel reduction and restoration 

treatments over longer time periods; this research only considered responses over the first 1-2 years post-

treatment.  The FFS study was originally conceived as a 5-year study, but continued work on existing FFS 

study areas could provide much needed information on long-term impacts of treatments, as well as on 

impacts of multiple re-entries of fuel reduction treatments. 

A primary strength of my analytic approach was the use of response variables (density and 

biomass) that had been corrected for variable detection probabilities, particularly detection probabilities 

varying by treatments.  Rather than estimate detection probabilities and hence true abundance, most 

investigators examining small mammal responses to forest management have relied on indices of 

abundance (minimum known alive or catch per unit effort) to estimate treatment effects (e.g., Tester 1965, 

Bock and Bock 1983, Masters et al. 1998, Steventon et al. 1998, Wilson and Carey 2000, Carey 2001).  

When comparing across areas that have been differentially influenced by a habitat disturbance, the 

assumption of equal detection probabilities required for valid use of index values seems particularly 

unrealistic because habitat changes may influence behavior and thus detection rates (Block et al. 2001).  In 

addition to this analysis, other work (Chapter 1, Chapter 2) has indicated that detection probabilities vary 

over space, time, and treatments. 
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Table 3.1.  Timing and characteristics of FFS Program study design and data contributed to analyses, for Gulf Coast Study Area – Alabama (GCSA), Hungry 

Bob Study Area – Oregon (HBSA), Jemez Mountains Study Area – New Mexico (JMSA), Lubrecht Forest Study Area – Montana (LFSA), Myakka River Study 

Area – Florida (MRSA), Southern Cascades Study Area – California (SCSA), Sequoia National Park Study Area – California (SNSA), and Southwest Plateau 

Study Area – Arizona (SPSA).  

Area Sampling  Thinning (Replicates) Burning (Replicates) Thinning/Burning (Replicates) Controls 

GCSA 2001-2003 Spring 2002 (3) Spring 2002 (3) Spring 2002/Spring 2002 (3) 3 
 

HBSA 2000-2001 Fall 1998 (4) Fall 2000 (4) Fall 1998/Fall 2000 (4) 3 

JMSA 2001-2003 Winter 2002-2003 (1) NA NA 3 

LFSA 2000, 2002 Winter 2001 (3) Spring 2002 (3) Winter 2001/Spring 2002 (3) 3 

MRSA 2000-2002 NA Summer 2000 (2), Summer 2001 (1) NA 1 

SCSA 2001, 2003 Fall 1998 (1), Summer 1999 (2) Fall 2002 (3) Fall 1998/Fall 2001 (1), Fall 1999/Fall 2001 
(1), Summer 1999/Fall 2001(1) 

3 

SNSA 2001-2003 NA Fall 2001 (3), Spring 2002 (3) NA 3 

SPSA 2000-2003 Winter 2002-2003 (6) NA NA 6 
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Table 3.2.  Variables and number of models used in FFS Program small mammal abundance estimation, for Gulf Coast Study Area – Alabama (GCSA), Hungry 

Bob Study Area – Oregon (HBSA), Jemez Mountains Study Area – New Mexico (JMSA), Lubrecht Forest Study Area – Montana (LFSA), Myakka River Study 

Area – Florida (MRSA), Southern Cascades Study Area – California (SCSA), Sequoia National Park Study Area – California (SNSA), and Southwest Plateau 

Study Area – Arizona (SPSA).  

Study Area Abundance Estimation Variables Total Models 

GCSA aBehavior, Age, Year, Unit, Thin, Burn, Thin*Year, Burn*Year, Thin*Burn,  68 

HBSA aMixture, Behavior, Year, Unit, Thin, Burn, Thin*Burn 40 

JMSA aBehavior, aTime of day, Age, Year OR Session(Year), Unit, Thin 24 

LFSA aBehavior, Age, Year, Site OR Unit, Thin, Burn, Thin*Burn 60 

MRSA a,bBehavior, Age, Year, Site OR Unit, Burn 24 

SCSA aMixture, Behavior, Year, Unit, Thin, Burn, Thin*Burn 40 

SNSA a,bBehavior, aDisturbance, Trap Density, Age, Year, Unit, Fall Burn, Spring Burn, Fall Burn*Year 80 

SPSA aBehavior, aTime of day, Trap effort, Age, Year OR Session(Year), Site OR Unit, Thin 72 

aThe denoted variable appeared in all models in the set based on a priori considerations.   

bA behavior effect was not estimable for cotton mice or cotton rats at the MRSA, or for long-tailed voles or northern flying squirrels at the SNSA.  
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Table 3.3.  Unique number of individuals captured for small mammal species at 8 FFS study areas, including Gulf Coast Study Area – Alabama (GCSA), Hungry 

Bob Study Area – Oregon (HBSA), Jemez Mountains Study Area – New Mexico (JMSA), Lubrecht Forest Study Area – Montana (LFSA), Myakka River Study 

Area – Florida (MRSA), Southern Cascades Study Area – California (SCSA), Sequoia National Park Study Area – California (SNSA), and Southwest Plateau 

Study Area – Arizona (SPSA).  

Species Mass (g)a GCSA HBSA JMSA LFSA MRSA SCSA SNSA SPSA Total 

Southern red-backed vole (Cleithrionomys gapperi) 20 0 0 0 74 0 0 0 0 74 

Northern flying squirrel (Glaucomys sabrinus) 45 0 0 0 0 0 0 14 0 14 

Southern flying squirrel (Glaucomys volans) 60 11 0 0 0 0 0 0 0 11 

Long-tailed vole (Microtus longicaudus) 30 0 0 23 0 0 0 21 0 44 

Mexican woodrat (Neotoma mexicana) 100 0 0 21 0 0 0 0 19 40 

Golden mouse (Ochrotomys nuttalli) 20 40 0 0 0 0 0 0 0 40 

Brush mouse (Peromyscus boylii) 14 0 0 0 0 0 0 36b 2b 38b 

Cotton mouse (Peromyscus gossypinus) 25 401 0 0 0 16 0 0 0 417 

Deer mouse (Peromyscus maniculatus) 14 0 83 265 541 0 19 1389 486 2783 

Columbian ground squirrel (Spermophilus columbianus) 340 0 10 0 0 0 0 0 0 10 

Golden-mantled ground squirrel (Spermophilus lateralis) 150 0 39 0 0 0 73 10 21 143 

Cotton rat (Sigmodon hispidus) 80 0 0 0 0 232 0 0 0 232 

continued 
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Table 3.3.  continued 

Species Mass (g)a GCSA HBSA JMSA LFSA MRSA SCSA SNSA SPSA Total 

Yellow-pine chipmunk (Tamias amoenus) 36 0 766 0 234 0 49 0 0 1049 

Gray-collared chipmunk (Tamias cinereicollis) 50 0 0 0 0 0 0 0 304 304 

Cliff chipmunk (Tamias dorsalis) 50 0 0 0 0 0 0 0 11 11 

Least chipmunk (Tamias minimus) 35 0 0 99 0 0 0 0 0 99 

Allen’s chipmunk (Tamias senex) 70 0 0 0 0 0 387 0 0 387 

Lodgepole chipmunk (Tamias speciosus) 30 0 0 0 0 0 0 335 0 335 

Red squirrel  (Tamiasciurus hudsonicus) 140 0 37 0 0 0 0 0 0 37 

Total  452 935 408 849 248 528 1805 843 6068 

aMass used to compute total small mammal biomass.     

bBrush mice were combined with deer mice prior to abundance analysis.   
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Table 3.4.  Model selection results from weighted regression analysis of golden-mantled ground squirrel densities from 4 FFS study areas.  Model selection results 
include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{treatment category (study area)} -166.935 0.000 0.81563 10 

Density{treatment} -161.526 5.409 0.05457 3 

Density{study area + treatment category (study area)} -160.548 6.387 0.03347 13 

Density{treatment (study area)} -160.207 6.727 0.02822 6 

Density{study area} -159.543 7.392 0.02025 5 

Density{treatment category} -159.495 7.440 0.01977 5 

Density{study area + treatment} -158.478 8.457 0.01189 6 

Density{constant} -158.133 8.802 0.01001 2 
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Table 3.5.  Estimated model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression analysis of treatment effects 
on golden-mantled ground squirrel densities from 4 FFS study areas. 
   
Variable Level Effect SE 95% CI 

Treatment Treatment 0.006 0.011 (-0.017, 0.028) 

Treatment (Study Area) Treatment HBSA 0.000 0.002 (-0.004, 0.004) 

 Treatment SCSA 0.008 0.016 (-0.023, 0.038) 

 Treatment SNSA 0.003 0.006 (-0.009, 0.014) 

 Treatment SPSA 0.000 0.004 (-0.008, 0.008) 

Treatment Category Burn 0.002 0.004 (-0.007, 0.011) 

 Thin 0.001 0.003 (-0.005, 0.006) 

 Thin/Burn 0.003 0.007 (-0.011, 0.017) 

Treatment Category (Study Area) Burn HBSA 0.034 0.155 (-0.270, 0.337) 

 Burn SCSA -0.025 0.144 (-0.307, 0.257) 

 Burn SNSA 0.083 0.049 (-0.014, 0.179) 

 Thin HBSA -0.026 0.079 (-0.181, 0.129) 

 Thin SCSA 0.231 0.171 (-0.105, 0.567) 

 Thin SPSA -0.009 0.103 (-0.211, 0.194) 

 Thin/Burn HBSA 0.037 0.199 (-0.352, 0.427) 

 Thin/Burn SCSA 1.005 0.528 (-0.030, 2.041) 
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Table 3.6.  Model selection results from weighted regression analysis of yellow-pine chipmunk densities from 3 FFS study areas.  Model selection results include 
AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{study area + treatment category (study area)} 184.150 0.000 0.68572 13 

Density{treatment category (study area)} 186.435 2.286 0.21870 11 

Density{year (study area) + treatment category (study area)} 188.352 4.202 0.08390 16 
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Table 3.7.  Estimated model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression analysis of treatment effects 
on yellow-pine chipmunk densities from 3 FFS study areas. 
   
Variable Level Effect SE 95% CI 

Treatment Treatment 0.000 0.001 (-0.002, 0.002) 

Treatment (Study Area) Treatment HBSA -0.001 0.009 (-0.018, 0.017) 

 Treatment LFSA 0.019 0.038 (-0.057, 0.094) 

 Treatment SCSA -0.001 0.004 (-0.009, 0.008) 

Treatment Category Burn 0.000 0.001 (-0.002, 0.001) 

 Thin 0.000 0.000 (0.000, 0.000) 

 Thin/Burn 0.000 0.001 (-0.002, 0.003) 

Treatment Category (Study Area) Burn HBSA 1.879 2.188 (-2.408. 6.167) 

 Burn LFSA -0.628 1.649 (-3.860, 2.604) 

 Burn SCSA -0.101 1.062 (-2.182, 1.981) 

 Thin HBSA -1.392 1.593 (-4.514, 1.730) 

 Thin LFSA 6.400 1.460 (3.539, 9.262) 

 Thin SCSA -0.064 0.670 (-1.378, 1.250) 

 Thin/Burn HBSA -0.695 2.330 (-5.261, 3.871) 

 Thin/Burn LFSA -2.831 2.111 (-6.968, 1.306) 

 Thin/Burn SCSA 0.916 1.247 (-1.527, 3.360) 
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Table 3.8.  Model selection results from weighted regression analysis of deer mouse densities from 6 FFS study areas.  Model selection results include AICc, 
relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{year (study area) + treatment category (study area)} 326.319 0.000 0.99967 29 
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Table 3.9.  Estimated model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression analysis of treatment effects 
on deer mouse densities from 6 FFS study areas. 
   
Variable Level Effect SE 95% CI 

Treatment Treatment 0.000 0.000 (0.000, 0.000) 

Treatment (Study Area) Treatment HBSA 0.000 0.000 (-0.001, 0.001) 

 Treatment JMSA 0.002 0.004 (-0.005, 0.009) 

 Treatment LFSA 0.002 0.005 (-0.007, 0.011) 

 Treatment SCSA 0.000 0.000 (0.000, 0.000) 

 Treatment SNSA 0.000 0.002 (-0.003, 0.003) 

 Treatment SPSA 0.000 0.000 (-0.001, 0.000) 

Treatment Category Burn 0.000 0.000 (0.000, 0.000) 

 Thin 0.000 0.000 (0.000, 0.000) 

 Thin/Burn 0.000 0.000 (0.000, 0.000) 

continued 
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Table 3.9.  continued.  
  
Variable Level Effect SE 95% CI 

Treatment Category (Study Area) Burn HBSA 0.254 1.662 (-3.004, 3.511) 

 Burn LFSA 14.387 2.018 (10.432, 18.341) 

 Burn SCSA 0.128 0.715 (-1.273, 1.529) 

 Burn SNSA -0.835 3.402 (-7.502, 5.833) 

 Thin HBSA 0.113 0.923 (-1.697, 1.923) 

 Thin JMSA 5.291 1.688 (1.982, 8.600) 

 Thin LFSA 1.666 1.614 (-1.498, 4.831) 

 Thin SCSA -0.003 0.507 (-0.997, 0.991) 

 Thin SPSA -0.264 0.504 (-1.252, 0.724) 

 Thin/Burn HBSA 0.315 1.670 (-2.959, 3.588) 

 Thin/Burn LFSA -6.855 3.067 (-12.866, -0.845) 

 Thin/Burn SCSA 0.009 0.930 (-1.813, 1.831) 
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Table 3.10.  Model selection results from weighted regression analysis of chipmunk densities from 6 FFS study areas.  Model selection results include AICc, 
relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{study area + treatment category (study area)} 397.864 0.000 0.99390 19 
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Table 3.11.  Estimated model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression analysis of treatment effects 
on chipmunk densities from 6 FFS study areas. 
   
Variable Level Effect SE 95% CI 

Treatment Treatment 0.000 0.000 (0.000, 0.000) 

Treatment (Study Area) Treatment HBSA 0.000 0.001 (-0.002, 0.001) 

 Treatment JMSA 0.001 0.001 (-0.002, 0.003) 

 Treatment LFSA 0.001 0.002 (-0.003, 0.005) 

 Treatment SCSA 0.000 0.001 (-0.001, 0.001) 

 Treatment SNSA 0.000 0.000 (-0.001, 0.001) 

 Treatment SPSA 0.000 0.000 (0.000, 0.001) 

Treatment Category Burn 0.000 0.000 (0.000, 0.000) 

 Thin 0.000 0.000 (0.000, 0.000) 

 Thin/Burn 0.000 0.000 (0.000, 0.000) 

continued 
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Table 3.11.  continued.  
  
Variable Level Effect SE 95% CI 

Treatment Category (Study Area) Burn HBSA 1.433 2.247 (-2.971, 5.838) 

 Burn LFSA -0.371 1.200 (-2.724, 1.981) 

 Burn SCSA -1.003 1.513 (-3.968, 1.963) 

 Burn SNSA 0.496 0.640 (-0.760, 1.751) 

 Thin HBSA -1.996 1.421 (-4.781, 0.789) 

 Thin JMSA 2.436 0.320 (1.809, 3.062) 

 Thin LFSA 6.838 1.083 (4.715, 8.961) 

 Thin SCSA 1.494 1.096 (-0.655, 3.643) 

 Thin SPSA 0.351 0.212 (-0.064, 0.766) 

 Thin/Burn HBSA -0.273 2.427 (-5.029, 4.484) 

 Thin/Burn LFSA -3.909 1.740 (-7.319, -0.498) 

 Thin/Burn SCSA 2.075 2.511 (-2.848, 6.997) 
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Table 3.12.  Model selection results from weighted regression analysis of Peromyscus spp. densities from 8 FFS study areas.  Model selection results include AICc, 
relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Density{year( study area) + treatment category (study area)} 526.074 0.000 0.98094 39 

Density{year (study area) + treatment (study area)} 533.958 7.884 0.01904 31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 162

Table 3.13.  Estimated model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression analysis of treatment effects 
on Peromyscus spp. densities from 8 FFS study areas. 
   
Variable Level Effect SE 95% CI 

Treatment Treatment 0.000 0.000 (0.000, 0.000) 

Treatment (Study Area) Treatment GCSA 0.078 0.155 (-0.225, 0.382) 

 Treatment HBSA 0.003 0.026 (-0.048, 0.055) 

 Treatment JMSA 0.101 0.207 (-0.305, 0.507) 

 Treatment LFSA 0.130 0.259 (-0.378, 0.637) 

 Treatment MRSA 0.013 0.066 (-0.116, 0.142) 

 Treatment SCSA 0.001 0.013 (-0.024, 0.026) 

 Treatment SNSA -0.016 0.106 (-0.223, 0.191) 

 Treatment SPSA -0.005 0.019 (-0.042, 0.032) 

Treatment Category Burn 0.000 0.000 (0.000, 0.000) 

 Thin 0.000 0.000 (0.000, 0.000) 

 Thin/Burn 0.000 0.000 (0.000, 0.000) 

continued 
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Table 3.13.  continued.   
 
Variable Level Effect SE 95% CI 

Treatment Category (Study Area) Burn GCSA 4.467 0.854 (2.793, 6.140) 

 Burn HBSA 0.251 2.102 (-3.868, 4.370) 

 Burn LFSA 14.117 2.847 (8.537, 19.697) 

 Burn MRSA 0.675 2.531 (-4.286, 5.636) 

 Burn SCSA 0.125 0.910 (-1.659, 1.909) 

 Burn SNSA -0.819 4.348 (-9.342, 7.704) 

 Thin GCSA 2.388 1.106 (0.220, 4.555) 

 Thin HBSA 0.109 1.144 (-2.133, 2.350) 

 Thin JMSA 5.192 2.249 (0.783, 9.601) 

 Thin LFSA 1.635 2.087 (-2.456, 5.726) 

 Thin SCSA -0.003 0.640 (-1.256, 1.251) 

 Thin SPSA -0.259 0.647 (-1.527, 1.008) 

 Thin/Burn GCSA 3.614 2.929 (-2.126, 9.355) 

 Thin/Burn HBSA 0.311 2.118 (-3.841, 4.462) 

 Thin/Burn LFSA -6.727 4.034 (-14.633, 1.179) 

 Thin/Burn SCSA 0.007 1.178 (-2.303, 2.316) 
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Table 3.14.  Model selection results from weighted regression analysis of total small mammal biomass from 8 FFS study areas.  Model selection results include 
AICc, relative AICc (∆AICc), Akaike weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 

Model AICc ∆AICc Weight K 

Biomass{year (study area) + treatment} 432.503 0.000 0.76300 24 

Biomass{year (study area) + treatment category} 435.667 3.164 0.15688 26 

Biomass{year (study area)} 437.055 4.552 0.07836 23 
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Table 3.15.  Estimated model-averaged effect sizes, standard errors (SE), and 95% confidence intervals (CI) from weighted regression analysis of treatment effects 
on total small biomass from 8 FFS study areas. 
   
Variable Level Effect SE 95% CI 

Treatment Treatment 30.812 21.506 (-11.341, 72.964) 

Treatment (Study Area) Treatment GCSA 0.085 0.175 (-0.259, 0.429) 

 Treatment HBSA -0.165 0.983 (-2.093, 1.762) 

 Treatment JMSA 3.908 33.809 (-62.358, 70.174) 

 Treatment LFSA -0.078 0.440 (-0.941, 0.785) 

 Treatment MRSA 0.306 1.635 (-2.899, 3.511) 

 Treatment SCSA -0.066 0.206 (-0.470, 0.337) 

 Treatment SNSA -0.189 0.424 (-1.020, 0.643) 

 Treatment SPSA 0.139 0.307 (-0.464, 0.741) 

Treatment Category Burn 5.329 9.837 (-13.952, 24.610) 

 Thin 9.377 16.777 (-23.506, 42.259) 

 Thin/Burn -16.802 31.310 (-78.170, 44.565) 

continued 
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Table 3.15.  continued.   
 
Variable Level Effect SE 95% CI 

Treatment Category (Study Area) Burn GCSA 0.001 0.003 (-0.004, 0.007) 

 Burn HBSA 0.004 0.017 (-0.030. 0.037) 

 Burn LFSA -0.003 0.009 (-0.021, 0.015) 

 Burn MRSA 0.005 0.026 (-0.045, 0.055) 

 Burn SCSA -0.003 0.006 (-0.015, 0.010) 

 Burn SNSA -0.003 0.007 (-0.016, 0.010) 

 Thin GCSA 0.002 0.004 (-0.005, 0.009) 

 Thin HBSA -0.003 0.016 (-0.036, 0.029) 

 Thin JMSA 0.062 0.530 (-0.976, 1.100) 

 Thin LFSA 0.002 0.010 (-0.017, 0.022) 

 Thin SCSA 0.003 0.009 (-0.014, 0.021) 

 Thin SPSA 0.002 0.005 (-0.007, 0.012) 

 Thin/Burn GCSA -0.006 0.012 (-0.029, 0.018) 

 Thin/Burn HBSA -0.005 0.019 (-0.041, 0.032) 

 Thin/Burn LFSA 0.002 0.010 (-0.018, 0.022) 

 Thin/Burn SCSA 0.012 0.028 (-0.043, 0.067) 
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Figure 1.   Layout of an example small mammal trapping grid at the HBSA, where black dots represent trap locations.  Such trapping grid layouts precluded 
empirical estimation of effective trap area.  A convex polygon (dashed line) was therefore used to calculate effective trap area, and thus small mammal density.  
Most trapping grids at the HBSA were larger than this example, but many had similarly problematic layouts.         

50 m
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APPENDIX 3A:   

MODEL SELECTION RESULTS FROM MODELING OF CAPTURE PROBABILITIES FOR SMALL MAMMAL SPECIES CAPTURED ON 

EIGHT FIRE AND FIRE SURROGATE PROGRAM STUDY AREAS, USA 
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Table 3A.1.  Initial capture (p) and recapture probability (c) models and model selection results for southern flying squirrels at the Gulf Coast Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (age) = c (behavior)} 77.681 0.000 0.50970 3 

{p (.) = c (behavior)} 79.208 1.527 0.23754 2 

{p (age + thin) = c (behavior)} 79.872 2.191 0.17042 4 

{p (thin) = c (behavior)} 81.326 3.646 0.08235 3 
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Table 3A.2.  Initial capture (p) and recapture probability (c) models and model selection results for golden mice at the Gulf Coast Study Area.  Capture probabilities 
were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters 
(K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (year + thin + burn + (thin * year)) = c (behavior)} 347.420 0.000 0.19303 7 

{p (year + burn) = c (behavior)} 348.204 0.784 0.13041 5 

{p (year + thin + burn) = c (behavior)} 348.229 0.809 0.12880 6 

{p (age + year + thin + burn + (thin * year)) = c (behavior)} 349.224 1.804 0.07831 8 

{p (thin + burn) = c (behavior)} 349.544 2.124 0.06674 4 

{p (age + year + burn) = c (behavior)} 349.980 2.560 0.05366 6 

{p (age + year + thin + burn) = c (behavior)} 350.012 2.592 0.05281 7 

{p (year + burn + (burn * year)) = c (behavior)} 350.268 2.849 0.04646 6 

{p (year + thin + burn + (burn * year)) = c (behavior)} 350.327 2.907 0.04512 7 

{p (burn) = c (behavior)} 351.128 3.709 0.03022 3 

{p (age + thin + burn) = c (behavior)} 351.514 4.094 0.02492 5 

{p (age + year + burn + (burn * year)) = c (behavior)} 352.059 4.640 0.01897 7 

{p (age + year + thin + burn + (burn * year)) = c (behavior)} 352.126 4.706 0.01836 8 

{p (.) = c (behavior)} 352.173 4.753 0.01793 2 

{p (year) = c (behavior)} 352.241 4.821 0.01733 4 

continued 
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Table 3A.2.  continued. 
    
Model AICc ∆AICc Weight K 

{p (thin) = c (behavior)} 352.244 4.825 0.01730 3 

{p (age + burn) = c (behavior)} 352.795 5.375 0.01314 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 172

Table 3A.3.  Initial capture (p) and recapture probability (c) models and model selection results for cotton mice at the Gulf Coast Study Area.  Capture probabilities 
were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters 
(K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (age + year + unit + thin + burn + thin * year) = c (behavior)} 3620.012 0.000 0.19851 19 

{p (year + unit + thin + burn + thin * year) = c (behavior)} 3620.822 0.810 0.13238 18 

{p (age + year + unit + thin + burn) = c (behavior)} 3620.960 0.949 0.12354 18 

{p (year + unit + thin + burn) = c (behavior)} 3621.569 1.557 0.09114 17 

{p (age + year + unit + thin + burn + thin * burn + thin * year) = c (behavior)} 3621.946 1.935 0.07545 20 

{p (age + year + unit + thin + burn + burn * year) = c (behavior)} 3622.456 2.444 0.05850 19 

{p (year + unit + thin + burn + thin * burn + thin * year) = c (behavior)} 3622.736 2.724 0.05084 19 

{p (age + year + unit + thin + burn + thin * burn) = c (behavior)} 3622.893 2.882 0.04699 19 

{p (year + unit + thin + burn + burn * year) = c (behavior)} 3622.979 2.967 0.04503 18 

{p (age + year + unit + thin + burn + thin * burn + thin * year + burn * year) = c (behavior)} 3623.388 3.377 0.03669 21 

{p (year + unit + thin + burn + thin * burn) = c (behavior)} 3623.482 3.470 0.03502 18 

{p (year + unit + thin + burn + thin * burn + thin * year + burn * year) = c (behavior)} 3624.101 4.089 0.02569 20 

{p (age + year + unit + thin + burn + thin * burn + burn * year) = c (behavior)} 3624.426 4.415 0.02184 20 

{p (year + unit + thin + burn + thin*burn + burn*year) = c (behavior)} 3624.937 4.925 0.01692 19 
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Table 3A.4.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Hungry Bob Study Area.  Capture probabilities 
were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of parameters 
(K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix + year) = c (.)} 471.250 0.000 0.27560 4 

{p (mix) = c (.)} 472.135 0.885 0.17705 3 

{p (mix + year + burn) = c (.)} 472.479 1.230 0.14902 5 

{p (mix + year + thin) = c (.)} 472.672 1.422 0.13536 5 

{p (mix + burn) = c (.)} 474.028 2.778 0.06871 4 

{p (mix + thin) = c (.)} 474.395 3.145 0.05719 4 

{p (mix + thin + burn) = c (.)} 474.707 3.458 0.04892 5 

{p (mix + year + thin + burn) = c (.)} 474.715 3.465 0.04873 6 

{p (mix + thin + burn + thin * burn) = c (.)} 476.344 5.094 0.02158 6 

{p (mix + year + thin + burn + thin * burn) = c (.)} 476.725 5.475 0.01784 7 
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Table 3A.5.  Initial capture (p) and recapture probability (c) models and model selection results for Columbian ground squirrels at the Hungry Bob Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix) = c (.)} 50.707 0.000 1.00000 3 
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Table 3A.6.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Hungry Bob Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix) = c (.)} 223.421 0.000 0.46065 3 

{p (mix + thin) = c (.)} 224.633 1.212 0.25135 4 

{p (mix) = c (behavior)} 225.289 1.868 0.18102 4 

{p (mix + thin) = c (behavior)} 226.341 2.920 0.10699 5 
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Table 3A.7.  Initial capture (p) and recapture probability (c) models and model selection results for yellow-pine chipmunks at the Hungry Bob Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix + unit + year) = c (.)} 5057.478 0.000 0.60654 18 

{p (mix + unit + year + burn) = c (.)} 5059.404 1.926 0.23160 19 

{p (mix + unit + burn) = c (.)} 5061.518 4.040 0.08047 18 

{p (mix + unit + year + thin + burn  + thin * burn) = c (.)} 5062.860 5.382 0.04114 21 

{p (mix + unit) = c (.)} 5063.776 6.297 0.02603 17 

{p (mix + unit + thin + burn + thin * burn) = c (.)} 5064.994 7.516 0.01415 20 
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Table 3A.8.  Initial capture (p) and recapture probability (c) models and model selection results for red squirrels at the Hungry Bob Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix) = c (.)} 158.043 0.000 0.60573 3 

{p (mix + year) = c (.)} 158.902 0.859 0.39427 4 
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Table 3A.9.  Initial capture (p) and recapture probability (c) models and model selection results for long-tailed voles at the Jemez Mountains Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m.) = c (behavior)} 128.940 0.000 0.73889 3 

{p (a.m. + age) = c (behavior)} 131.020 2.080 0.26111 4 
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Table 3A.10.  Initial capture (p) and recapture probability (c) models and model selection results for Mexican woodrats at the Jemez Mountains Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (a.m. + year + age) = c (behavior)} 151.774 0.000 0.20343 6 

{p (a.m. + year + unit + thin) = c (behavior)} 151.819 0.046 0.19882 9 

{p (a.m. + year + thin + age) = c (behavior)} 152.464 0.690 0.14406 7 

{p (a.m. + year + thin) = c (behavior)} 152.533 0.760 0.13914 6 

{p (a.m. + year) = c (behavior)} 153.338 1.564 0.09306 5 

{p (a.m. + year + unit) = c (behavior)} 153.808 2.034 0.07357 8 

{p (a.m. + year + unit + thin +age) = c (behavior)} 153.929 2.155 0.06924 10 

{p (a.m. + year + unit + age) = c (behavior)} 154.646 2.873 0.04837 9 

{p (a.m. + thin) = c (behavior)} 157.646 5.873 0.01079 4 
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Table 3A.11.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Jemez Mountains Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (a.m. + year + age) = c (behavior)} 2043.405 0.000 0.42832 6 

{p (a.m. + year + thin + age) = c (behavior)} 2044.182 0.777 0.29037 7 

{p (a.m. + session(year) + age) = c (behavior)} 2045.401 1.997 0.15784 9 

{p (a.m. + session(year) + thin + age) = c (behavior)} 2047.342 3.937 0.05981 10 

{p (a.m. + year + unit + thin + age) = c (behavior)} 2048.932 5.527 0.02701 10 

{p (a.m. + year + unit + age) = c (behavior)} 2049.168 5.763 0.02400 9 
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Table 3A.12.  Initial capture (p) and recapture probability (c) models and model selection results for least chipmunks at the Jemez Mountains Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc, Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight. 
    
Model AICc ∆AICc Weight K 

{p (a.m. + year + thin) = c (behavior)} 1132.426 0.000 0.33634 6 

{p (a.m. + session(year) + thin) = c (behavior)} 1132.922 0.496 0.26249 9 

{p (a.m. + year + thin + age) = c (behavior)} 1133.752 1.326 0.17333 7 

{p (a.m. + session(year) + thin + age) = c (behavior)} 1134.958 2.532 0.09485 10 

{p (a.m. + year + unit + thin) = c (behavior)} 1135.829 3.403 0.06137 9 

{p (a.m. + session(year) + unit + thin) = c (behavior)} 1137.310 4.884 0.02926 12 

{p (a.m. + year + unit + thin + age) = c (behavior)} 1137.564 5.138 0.02577 10 

{p (a.m. + session(year) + unit + thin + age) = c (behavior)} 1139.314 6.888 0.01074 13 
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Table 3A.13.  Initial capture (p) and recapture probability (c) models and model selection results for southern red-backed voles at the Lubrecht Forest  Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (age + year + thin) = c (behavior)} 384.205 0.000 0.29804 5 

{p (age + year) = c (behavior)} 384.748 0.544 0.22710 4 

{p (age + year + thin + burn) = c (behavior)} 385.969 1.764 0.12338 6 

{p (age + year + burn) = c (behavior)} 386.757 2.552 0.08321 5 

{p (age + site + year + thin) = c (behavior)} 387.074 2.870 0.07098 7 

{p (age + site + year) = c (behavior)} 387.537 3.332 0.05633 6 

{p (age + year + thin + burn + thin * burn) = c (behavior)} 387.906 3.702 0.04682 7 

{p (age + site + year + thin + burn) = c (behavior)} 389.074 4.869 0.02612 8 

{p (age + site + year + burn) = c (behavior)} 389.609 5.404 0.01999 7 

{p (age) = c (behavior)} 390.203 5.998 0.01485 3 
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Table 3A.14.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Lubrecht Forest Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (age + unit + year + thin + burn) = c (behavior)} 3561.396 0.000 0.63300 17 

{p (age + unit + year + thin + burn + thin * burn) = c (behavior)} 3563.411 2.015 0.23112 18 

{p (age + unit + year + burn) = c (behavior)} 3565.219 3.823 0.09358 16 

{p (age + unit + year + thin) = c (behavior)} 3567.665 6.270 0.02754 16 
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Table 3A.15.  Initial capture (p) and recapture probability (c) models and model selection results for yellow-pine chipmunks at the Lubrecht Forest Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (age + site + thin) = c (behavior)} 1498.503 0.000 0.23377 6 

{p (age + site + thin + burn) = c (behavior)} 1499.245 0.742 0.16133 7 

{p (age + unit + year + thin + burn) = c (behavior)} 1499.688 1.185 0.12926 16 

{p (age + site + year + thin) = c (behavior)} 1500.526 2.023 0.08502 7 

{p (age + site + thin + burn + thin * burn) = c (behavior)} 1500.811 2.308 0.07372 8 

{p (age + unit + thin + burn) = c (behavior)} 1501.066 2.563 0.06489 15 

{p (age + site + year + thin + burn) = c (behavior)} 1501.183 2.680 0.06120 8 

{p (age + unit + year + thin + burn + thin * burn) = c (behavior)} 1501.521 3.018 0.05168 17 

{p (age + site + year + thin + burn + thin * burn) = c (behavior)} 1502.555 4.052 0.03082 9 

{p (age + unit + burn) = c (behavior)} 1502.756 4.253 0.02788 14 

{p (age + unit + thin + burn + thin * burn) = c (behavior)} 1503.113 4.610 0.02332 16 

{p (age + thin) = c (behavior)} 1504.282 5.779 0.01300 4 

{p (age + unit + thin) = c (behavior)} 1504.664 6.162 0.01074 14 

{p (age + unit + year + burn) = c (behavior)} 1504.806 6.303 0.01000 15 
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Table 3A.16.  Initial capture (p) and recapture probability (c) models and model selection results for cotton mice at the Myakka River Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (.) = c (.)} 85.577 0.000 0.39863 1 

{p (site) = c (.)} 86.366 0.789 0.26871 2 

{p (burn) = c (.)} 87.635 2.058 0.14245 2 

{p (site + burn) = c (.)} 88.417 2.840 0.09636 3 

{p (year) = c (.)} 89.795 4.218 0.04838 3 

{p (year + site) = c (.)} 89.919 4.342 0.04548 4 
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Table 3A.17.  Initial capture (p) and recapture probability (c) models and model selection results for cotton rats at the Myakka River Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (age + unit) = c (.)} 1091.789 0.000 0.46904 5 

{p (age + unit + burn) = c (.)} 1093.744 1.955 0.17645 6 

{p (unit) = c (.)} 1095.237 3.448 0.08366 4 

{p (age + year + unit) = c (.)} 1095.823 4.035 0.06238 7 

{p (age + site) = c (.)} 1096.570 4.782 0.04294 3 

{p (unit + burn) = c (.)} 1097.003 5.215 0.03458 5 

{p (age) = c (.)} 1097.181 5.392 0.03165 2 

{p (age + site + burn) = c (.)} 1098.418 6.629 0.01705 4 

{p (age + year) = c (.)} 1098.893 7.104 0.01344 4 

{p (age + burn) = c (.)} 1099.059 7.271 0.01237 3 

{p (year + unit) = c (.)} 1099.164 7.375 0.01174 6 
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Table 3A.18.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Southern Cascades Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix) = c (.)} 101.469 0.000 1.00000 3 
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Table 3A.19.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Southern Cascades 
Study Area.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix + burn) = c (.)} 346.687 0.000 0.39049 4 

{p (mix + year) = c (.)} 347.609 0.921 0.24634 4 

{p (mix) = c (.)} 348.086 1.399 0.19406 3 

{p (mix + year + burn) = c (.)} 348.361 1.674 0.16911 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 189

Table 3A.20.  Initial capture (p) and recapture probability (c) models and model selection results for yellow-pine chipmunks at the Southern Cascades Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix + thin) = c (.)} 284.246 0.000 0.27942 4 

{p (mix + thin + burn) = c (.)} 285.426 1.180 0.15489 5 

{p (mix + year + thin) = c (.)} 286.034 1.788 0.11427 5 

{p (mix + thin) = c (behavior)} 286.221 1.975 0.10407 5 

{p (mix + thin + burn) = c (behavior)} 287.379 3.133 0.05833 6 

{p (mix + year + thin + burn) = c (.)} 287.525 3.280 0.05420 6 

{p (mix + year + thin) = c (behavior)} 288.061 3.815 0.04147 6 

{p (mix + year) = c (.)} 288.141 3.896 0.03984 4 

{p (mix + burn) = c (.)} 288.376 4.130 0.03543 4 

{p (mix) = c (.)} 289.313 5.067 0.02218 3 

{p (mix + year + thin + burn) = c (behavior)} 289.485 5.240 0.02034 7 

{p (mix + burn) = c (behavior)} 289.580 5.334 0.01941 5 

{p (mix + year + burn) = c (.)} 289.740 5.495 0.01791 5 

{p (mix + year) = c (behavior)} 289.859 5.614 0.01687 5 

{p (mix) = c (behavior)} 290.364 6.118 0.01311 4 
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Table 3A.21.  Initial capture (p) and recapture probability (c) models and model selection results for Allen’s chipmunks at the Southern Cascades Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (mix + unit) = c (behavior)} 2377.072 0.000 0.36376 15 

{p (mix + unit + burn) = c (behavior)} 2378.929 1.857 0.14374 16 

{p (mix + year + unit) = c (behavior)} 2378.984 1.913 0.13980 16 

{p (mix + unit + thin) = c (behavior)} 2379.105 2.034 0.13159 16 

{p (mix + year + unit + burn) = c (behavior)} 2380.953 3.881 0.05224 17 

{p (mix + unit + thin + burn) = c (behavior)} 2380.964 3.893 0.05194 17 

{p (mix + year + unit + thin) = c (behavior)} 2381.020 3.948 0.05052 17 

{p (mix + unit + thin + burn + thin * burn) = c (behavior)} 2381.994 4.922 0.03104 18 

{p (mix + year + unit + thin + burn) = c (behavior)} 2382.991 5.919 0.01886 18 

{p (mix + year + unit + thin + burn + thin * burn) = c (behavior)} 2384.022 6.951 0.01126 19 

 
 
 
 
 
 
 
 
 
 
 
 



 

 191

Table 3A.22.  Initial capture (p) and recapture probability (c) models and model selection results for northern flying squirrels at the Sequoia National Park Study 
Area.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, 
and number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (effort) = c (.)} 109.104 0.000 0.29568 2 

{p (effort + spring burn) = c (.)} 109.126 0.021 0.29255 3 

{p (effort + trap density) = c (.)} 110.472 1.368 0.14922 3 

{p (effort + trap density + spring burn) = c (.)} 111.025 1.921 0.11318 4 

{p (effort + year) = c (.)} 112.550 3.445 0.05280 4 

{p (effort + year + trap density) = c (.)} 112.877 3.773 0.04483 5 

{p (effort + year + spring burn) = c (.)} 113.405 4.301 0.03443 5 

{p (effort + year + trap density + spring burn) = c (.)} 114.781 5.677 0.01731 6 
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Table 3A.23.  Initial capture (p) and recapture probability (c) models and model selection results for long-tailed voles at the Sequoia National Park Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (effort) = c (.)} 151.920 0.000 0.32907 2 

{p (effort + fall burn) = c (.)} 153.686 1.766 0.13612 3 

{p (effort + spring burn) = c (.)} 153.771 1.851 0.13045 3 

{p (effort + trap density) = c (.)} 153.838 1.918 0.12613 3 

{p (effort + fall burn + spring burn) = c (.)} 154.111 2.191 0.11003 4 

{p (effort + trap density + fall burn) = c (.)} 154.892 2.972 0.07445 4 

{p (effort + trap density + spring burn) = c (.)} 155.793 3.873 0.04746 4 

{p (effort + trap density + fall burn + spring burn) = c (.)} 155.843 3.923 0.04629 5 
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Table 3A.24.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Sequoia National Park Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (effort + year + unit + age + trap density + fall burn + fall burn * year) = c (behavior)} 13382.473 0.000 0.51021 17 

{p (effort + year + unit + age + trap density + fall burn + spring burn + fall burn * year) = c (behavior)} 13382.582 0.109 0.48322 18 
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Table 3A.25.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Sequoia National Park 
Study Area.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (effort + spring burn) = c (behavior)} 101.828 0.000 0.50449 4 

{p (effort + fall burn + spring burn) = c (behavior)} 103.600 1.772 0.20801 5 

{p (effort + trap density + spring burn) = c (behavior)} 104.019 2.191 0.16869 5 

{p (effort + trap density + fall burn + spring burn) = c (behavior)} 105.795 3.967 0.06942 6 

{p (effort) = c (behavior)} 108.619 6.790 0.01692 3 

{p (effort + fall burn) = c (behavior)} 108.769 6.941 0.01569 4 

{p (effort + trap density) = c (behavior)} 109.652 7.823 0.01009 4 
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Table 3A.26.  Initial capture (p) and recapture probability (c) models and model selection results for lodgepole chipmunks at the Sequoia National Park Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (effort + year + trap density + fall burn + spring burn + fall burn * year) = c (behavior)} 3053.664 0.000 0.22003 9 

{p (effort + year + age + trap density + fall burn + spring burn + fall burn * year) = c (behavior)} 3053.685 0.021 0.21777 10 

{p (effort + year + age + trap density + fall burn + fall burn * year) = c (behavior)} 3054.763 1.099 0.12703 9 

{p (effort + year + trap density + spring burn) = c (behavior)} 3054.893 1.229 0.11900 7 

{p (effort + year + trap density + fall burn + fall burn * year) = c (behavior)} 3054.899 1.235 0.11869 8 

{p (effort + year + age + trap density + spring burn) = c (behavior)} 3055.705 2.041 0.07930 8 

{p (effort + year + trap density + fall burn + spring burn) = c (behavior)} 3056.665 3.001 0.04907 8 

{p (effort + year + age + trap density + fall burn + spring burn) = c (behavior)} 3057.438 3.774 0.03334 9 

{p (effort + year + trap density) = c (behavior)} 3059.004 5.340 0.01524 6 

{p (effort + year + age + trap density) = c (behavior)} 3059.750 6.086 0.01049 7 
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Table 3A.27.  Initial capture (p) and recapture probability (c) models and model selection results for Mexican woodrats at the Southwest Plateau Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
    
Model AICc ∆AICc Weight K 

{p (a.m.) = c (behavior)} 113.144 0.000 0.35294 3 

{p (a.m. + effort) = c (behavior)} 113.543 0.399 0.28913 4 

{p (a.m. + thin) = c (behavior)} 115.033 1.890 0.13722 4 

{p (a.m. + site) = c (behavior)} 116.390 3.246 0.06965 5 

{p (a.m. + year) = c (behavior)} 116.397 3.253 0.06938 5 

{p (a.m. + effort + site) = c (behavior)} 117.248 4.104 0.04534 6 

{p (a.m. + thin + site) = c (behavior)} 118.404 5.261 0.02543 6 

{p (a.m. + year + site) = c (behavior)} 120.098 6.954 0.01091 7 
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Table 3A.28.  Initial capture (p) and recapture probability (c) models and model selection results for deer mice at the Southwest Plateau Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + effort + year + site) = c (behavior)} 3200.887 0.000 0.50661 10 

{p (a.m. + age + effort + thin + year + site) = c (behavior)} 3202.873 1.986 0.18768 11 

{p (a.m. + age + effort + year) = c (behavior)} 3203.073 2.186 0.16979 8 

{p (a.m. + age + effort + thin + year) = c (behavior)} 3205.077 4.190 0.06235 9 

{p (a.m. + age + effort + session(year) + site) = c (behavior)} 3206.976 6.089 0.02413 14 

{p (a.m. + age + effort + year + unit) = c (behavior)} 3207.942 7.055 0.01488 19 
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Table 3A.29.  Initial capture (p) and recapture probability (c) models and model selection results for golden-mantled ground squirrels at the Southwest Plateau 
Study Area.  Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike 
weight, and number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m. + year) = c (behavior)} 194.310 0.000 0.40748 6 

{p (a.m. + thin + year) = c (behavior)} 195.342 1.032 0.24325 7 

{p (a.m. + age + year) = c (behavior)} 195.841 1.531 0.18953 7 

{p (a.m. + age + thin + year) = c (behavior)} 196.695 2.385 0.12368 8 
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Table 3A.30.  Initial capture (p) and recapture probability (c) models and model selection results for gray-collared chipmunks at the Southwest Plateau Study Area.  
Capture probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and 
number of parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m. + age + effort + thin + session(year) + unit) = c (behavior)} 3199.840 0.000 0.49517 23 

{p (a.m. + age + effort + thin + session(year)) = c (behavior)} 3201.832 1.991 0.18296 15 

{p (a.m. + age + effort + thin + session(year) + site) = c (behavior)} 3201.872 2.032 0.17926 15 

{p (a.m. + age + thin + session(year) + unit) = c (behavior)} 3204.719 4.879 0.04319 22 

{p (a.m. + age + effort + session(year) + unit) = c (behavior)} 3205.526 5.686 0.02885 22 

{p (a.m. + age + effort + thin + unit) = c (behavior)} 3206.190 6.350 0.02070 16 

{p (a.m. + age + effort + session(year)) = c (behavior)} 3206.402 6.562 0.01861 12 
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Table 3A.31.  Initial capture (p) and recapture probability (c) models and model selection results for cliff chipmunks at the Southwest Plateau Study Area.  Capture 
probabilities were modeled to produce derived abundance estimates.  Model selection results include AICc, relative AICc (∆AICc), Akaike weight, and number of 
parameters (K), for those models with at least 1% of the Akaike weight.  
 
Model AICc ∆AICc Weight K 

{p (a.m.) = c (behavior)} 92.601 0.000 1.00000 3 

 
 
 
 
 
 
 
 
 
 



 

  

 

 

 

CHAPTER 4: 

AN OCCUPANCY MODEL TO RECONSTRUCT HISTORICAL FOREST FIRE REGIMES 

FROM FIRE SCARS 

 

INTRODUCTION 

Historical ecological data have been used to understand ecosystem structure and function as well 

as to set guidelines for ecosystem management (Swetnam et al. 1999, Romme et al. 2000).  Ponderosa pine 

(Pinus ponderosa) forests, particularly forests in the southwestern United States, constitute an ecosystem in 

which historical data have played a relatively large role in informing ecological knowledge and 

management planning.  A major focus of current research and management efforts in ponderosa pine 

forests is on restoring ecosystem structure and function that were apparently modified after EuroAmerican 

settlement in the mid-nineteenth century (Covington and Moore 1994, Moore et al. 1999, Allen et al. 2002).  

Changes in ecosystem structure and function appear to be linked to changes in the fire regime in these 

forests, notably transition from a pre-EuroAmerican settlement fire regime of frequent, low-severity fires to 

long fire-free periods in the early 20th century, followed by current trends toward fires of increasing size 

and severity.  There is tremendous research and management interest in the use of fuel reduction or 

restoration treatments, consisting primarily of thinning and prescribed fire, to restore forests to pre-

EuroAmerican settlement conditions, with more open forests, richer herbaceous understories, and lower 

risk of severe wildfire (Covington et al. 1997; Lynch et al. 2000; Fulé et al. 2001a,b).  Historical data have 

been used to investigate drivers of historical fire regimes (Swetnam 1990), document changes in fire 

regimes since EuroAmerican settlement (Fulé et al. 1997) and investigate the causes of these changes 

(Savage and Swetnam 1990).   

A major source of historical data on fire regimes in ponderosa pine forests is from fire scars in tree 

growth annuli, including live trees, dead logs, snags, and stumps (Dieterich 1980, Stokes 1980, Dieterich 

and Swetnam 1984, Swetnam and Dieterich 1985, Baisan and Swetnam 1990).  Fires that occur at the base 



 

  

of a tree may, in some cases, lead to physiological damage to the tree, thus resulting in an identifiable scar 

in the annulus for that year.  Growth annuli can be cross-dated using dendrochronological techniques, 

leading to high temporal resolution in scar dating (Baisan and Swetnam 1990, Swetnam et al. 1999), i.e., 

scars and therefore fires can be dated to annual resolution.  The formation of the first scar on a tree leads to 

a much higher probability of subsequent scarring due to the flammability of exposed wood and resin 

(Johnson and Gutsell 1994, Swetnam et al. 1999), resulting in what is referred to as a recorder tree.  

Recorder trees can be identified by prominent triangular injuries near their bases; these injuries are sampled 

by removing a wedge or cross-section from the tree at the site of the injury.  The samples are then prepared, 

cross-dated with known regional dendrochronologies, and fire scars are dated to year and sometimes to 

season.  Such studies are particularly suited for southwestern ponderosa pine forests because dead 

recorders, such as snags, logs, and stumps, tend to be well preserved due to the low decay rates in these dry 

forests, thereby increasing the amount of historical information available (Covington et al. 1997).   

Fire scar data have been used to assess various parameters of the historical fire regime, primarily 

fire return interval and spatial extent of fires.  However, there have been objections to the methods used to 

assess these parameters, and there is uncertainty about the strength of inference from fire scar datasets 

(Johnson and Gutsell 1994, Minnich et al. 2000, Veblen 2000, Baker and Ehle 2001).  There is a need for 

more robust inferential methods as fire-scar studies are used not just to lend scientific support to the 

reintroduction of fire, but to make recommendations for the management of prescribed fire regimes, for 

example, intervals between burns and the size of burns (Swetnam et al. 1999, Baker and Ehle 2001).  The 

underlying uncertainty in fire scar studies lies in the fact that all fires are not recorded as scars on recorder 

trees, and, furthermore, scars can be destroyed by more recent fires, so the probability of detecting a fire on 

a recorder tree given that a fire occurred at the base of the tree is < 1.  Formally, the probability of detecting 

a fire is equal to the probability that a fire occurred, multiplied by the probability that a scar was formed 

given that a fire occurred, multiplied by the probability that the scar was retained given that it formed:  

Pr(detecting fire) = Pr(fire occurred) * Pr(scar formed | fire occurred) * Pr(scar retained | scar formed).     

Fire return interval is the interval between successive fires in a specified area (Romme 1980), e.g., 

at a recorder tree.  The mean fire return interval is the average of fire return intervals across time in a 

defined area.  Fire return intervals as currently constructed are frequently termed composite mean fire 



 

  

return intervals (Dieterich 1980).  All fires recorded anywhere in a forested stand of variable area are added 

together and the composite mean fire return interval (CMFI) is the average of the intervals between all fires 

in the stand.  It can be seen, however, that the CMFI depends on the area sampled, because some recorded 

fires may not have burned the entire sampled stand, and as stand size increases, more fires will have 

occurred in the stand (Baker and Ehle 2001, Morgan et al. 2001).  Therefore, CMFI is a description of the 

average number of years during which no fire burned anywhere in the stand.  Any given point in a stand, 

however, possibly burned less often than this.  As an attempt to correct for this problem, some workers 

have calculated CMFI based on scars that appeared on a certain percentage of the trees (e.g., 10% or more 

and 25% or more of trees; Savage and Swetnam 1990, Fulé et al. 1997, Fulé et al. 2003), thereby 

attempting to reduce the impact of small fires on the calculation of CMFI.  However, this method may 

change the value of CMFI substantially (e.g., Swetnam 1990), and rules for including only a certain 

proportion of fire-scarred samples are ad hoc and inherently arbitrary.  Additionally, no estimator of 

precision is available for CMFI (Morgan et al. 2001).  Rather than basing inference solely on the mean of 

intervals between fires as in the CMFI, some investigators have also computed the Weibull median 

probability interval, which may better reflect central tendencies than the mean, though the ecological 

interpretation of the parameters of the Weibull distribution is difficult (Grissino-Mayer 1999).  The use of 

the Weibull distribution does not solve the difficulties associated with study area size. 

No quantitatively rigorous method is available to estimate the proportion of an area burned in a 

given year from historical data (Minnich et al. 2000, Morgan et al. 2001, Fulé et al. 2003).  The relative 

proportion of recorder trees in a stand that have a scar in a given year has been used as an index of fire size 

and/or severity (Swetnam and Dieterich 1985, Fulé et al. 1997).  However, size and severity cannot be 

separated using this method because the detection probabilities of fires are not estimated.  Presumably, 

more severe fires have a higher probability of scarring trees, though this assumption has not been directly 

tested.  Dieterich (1980) noted that it is not possible to use widely spaced scars in the same year to surmise 

that the area between the scars burned in that year, as multiple disjunct fires may have burned one stand in 

a given year.  Again, there is no method for estimating the uncertainty around an estimate of fire extent 

(Morgan et al. 2001).          



 

  

Here I propose a method to estimate both the mean fire return interval in such a way as to 

eliminate the confounding factor of sampling scale, as well as the proportion of an area burned in a year.  

These statistics may be estimated through application of theory developed to estimate site occupancy 

probabilities in animal populations with imperfect detection probabilities (MacKenzie et al. 2002, Tyre et 

al. 2003).  The similarities between estimating detection probabilities for animals and detection 

probabilities for fires from fire scars in tree rings suggest that useful insights could be gleaned from the 

theory behind models designed to correct for imperfect detection of animals.  The method I present 

includes the specification of statistical models in a likelihood framework, which allows for the use of 

information-theoretic model selection and model-based inferential methods (Burnham and Anderson 2002), 

for example, in the consideration of models allowing for the inclusion of various types of covariates.  Such 

modeling efforts should yield useful insights into mechanisms of both fire occurrence and detection. 

Occupancy Model and Analogy to Fire Occupancy 

The proposed model for analysis of fire scar datasets is the model of MacKenzie et al. (2002), 

hereafter referred to as the occupancy model.  This model is equivalent to the zero-inflated binomial model 

of Tyre et al. (2003).  The occupancy model was designed to estimate the proportion of sites on a landscape 

occupied by a species (primarily applied to animal species) when the probability of detecting the species is 

< 1.  Use of the method requires that multiple visits to a site (occasions) be undertaken, during which the 

species is either detected or not, over a period of time during which the population can be assumed to be 

closed to extinction and colonization.  Through this sampling scheme, the probability of detection at each 

occasion (pt) and the proportion of occupied sites (ψ) can be estimated.  The occupancy model also allows 

for missing values on some sites at some occasions, for example, if some sites were not sampled on a 

particular occasion due to logistical constraints.       

The analogous application of the occupancy model to fire scar studies involves the selection of 

sites on a landscape of interest that are small enough that they can be assumed “closed” to fire, so that the 

entire site either burned or did not burn in a given year.  Each site must contain ≥ 1 recorder trees that were 

active, that is, alive and capable of recording a fire, in each year to which inference is desired.  Some 

portion of the sites would need to have ≥ 2 recorder trees in order to estimate detection probability of fire 

within a site.  The data then consist of binomial “encounter histories” for each site and year combination in 



 

  

the data set (Table 4.1), in which “occasions” are represented by recorder trees located within a site, so that 

multiple recorder trees at a site are substituted for repeat visits to a site over time.  From this data, inference 

may be made to a landscape of sites or a time series of years, including the annual percent of area burned or 

the return interval of fire.      

Two parameters are estimable, including     

pt = Pr(tree t has fire scar | fire burned in vicinity of tree t) 

and (if encounter histories for each site and year combination are grouped by site for analysis) 

ψs = Proportion of sampled years in which a fire burned at site s 

or (if encounter histories for each site and year combination are grouped by year for analysis) 

ψy = Proportion of sampled sites in which a fire burned in year y  

Estimation of the parameters occurs through specification of the probability structure associated 

with each of the encounter histories.  For illustration purposes, consider the first detection probability in 

Table 4.1: 0110.  The probability of observing this encounter history is equal to ψ(1 − pA) pB pC (1 −  pD), 

that is, the site was occupied (ψ), no fire was observed at recorder tree A (1 − pA), fires were observed at 

both recorder tree B (pB) and C (pC ), and no fire was observed at recorder tree D (1 −  pD).  The second 

encounter history in Table 4.1 is 0000, with probability structure ψ(1 − pA)(1 −  pB)(1 − pC)(1 −  pD) + (1 − 

ψ).  This encounter history could have arisen from one of 2 possibilities: either site s was unoccupied in 

year y (1 − ψ) or it was occupied (ψ) but a fire was not detected at recorder trees A, B, C, or D [(1 − pA)(1 −  

pB)(1 − pC)(1 −  pD)].  Summarizing the probability structure for all possible encounter histories results in 

the joint likelihood function of MacKenzie et al. (2002) for estimation of ψ and each of the pt detection 

probabilities: 
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where T is the number of recorder trees per site, N is the total number of sites or years, nt is the number of 

sites or years where a fire was detected at recorder tree t, and n. is the number of sites or years where a fire 

was detected at ≥ 1 recorder tree.  In practice, multiple groups of sites or years could be analyzed 

simultaneously, with some cross-group estimation of parameters.  This would increase modeling efficiency 

while inducing a covariance across the multiple estimated ψs or ψy.   



 

  

Then, estimators of interest allowing inference to the entire study area include mean fire return 

interval (MFI): 

∑
=

s
s

SN
ψ

MFI                                                                       (2) 

where SN  is the total number of sites analyzed.  This estimator is the inverse of the mean (across sites, 

where sites are represented by groups in the analysis) of the proportion of sampled years in which a fire 

occurred, for example, sψ  = 0.3 implies an MFI of 1/0.3 = 3.4 years.  The variance estimator for MFI can 

be derived using a delta method approximation (Seber 2002) as: 
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The second parameter of interest is     
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where YN  is the total number of years analyzed (where years are represented by groups in the analysis) 

and A is the size of the study area.  Here, the estimator of variance is   
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One important difference from the occupancy model, when analyzing fire scar data, is that a 

model with fully time-specific detection probabilities is not sensible.  This is because there is no relation 

between tree t at site A and tree t at site B; trees are not arranged in a meaningful order in each site as 

occasions are arranged in time in the occupancy model.   

Sampling 

Additional criticisms of fire scar studies have focused on the sampling methods employed.  These 

criticisms have primarily concerned the non-random sampling of fire-scarred trees.  Selective, or targeted, 



 

  

sampling of trees has been the standard method of fire-scar sampling, whereby a landscape of interest is 

searched for the trees with the longest and largest record of fire-scars and these trees are sampled to 

calculate statistics such as CMFI (Swetnam and Dieterich 1985, Baisan and Swetnam 1990, Swetnam and 

Baisan 1996, Fulé et al. 1997, Fulé et al. 2003).  This method has received criticism (Johnson and Gutsell 

1994, Baker and Ehle 2001) because of its nonrandom nature, though Swetnam and Baisan (1996) contend 

that because of the high heterogeneity in the fire scar records in recorder trees, caused by factors such as 

the position of the tree in the landscape, bark thickness, etc., it is inefficient to sample trees as if they all 

belong to the same population.  Critics counter that the non-random nature of selection will result in 

unknown bias in calculation of statistics such as CMFI.  Bias could be induced if, for example, trees with a 

tendency to incur greater numbers of scars occurred in areas that also tended to receive more fires.     

In the model presented here, sampling to produce a fire scar dataset would consist of selecting 

random points in a landscape to which inference is desired, then censusing (or less likely, selecting a 

random sample of) recorder trees in a circle of radius r around the random point.  Random sampling of sites 

and a census or random sample of recorder trees within sites insures that the sampling process is not 

correlated with aspects of the fire regime, and that statistical inference is supported (Johnson and Gutsell 

1994, Minnich et al. 2000).  Each circle of radius r would comprise a site.  The radius r should be constant 

across sites and r should be adequate to provide 1 or more recorder trees at each site/year combination, but 

not so large as to risk serious violation of the assumption of spatial closure.  Furthermore, placing a site 

across geologic features that would lead to a lack of spatial closure, such as cliffs, rivers, etc., should be 

avoided.  One important consideration is that it is not possible to know in the field what years a given 

recorder tree will cover, i.e., whether a recorder tree will be “active” in a given year.  Therefore, 

maximizing the number of possible samples per site will maximize the information available in the dataset, 

thereby leading to the most precise, unbiased estimates of fire regime parameters.   

Within sites, recorder trees will generally be recognized by an external injury at the tree’s (or 

log’s, snag’s, etc.) base.  To be considered a recorder tree, a tree must have some non-negligible probability 

of recording an interval between fire events, because the interval between fire events is of primary interest 

for inference.  Once a tree is first scarred, it then becomes a “recorder” tree that is available for further 

scarring, until its death.  Johnson and Gutsell (1994) correctly contend that the tree pith-to-first scar period 



 

  

and the last scar-to-tree death period do not represent real fire-free intervals.  Inclusion of the pith-to-first 

scar portion of the sample has been argued for (Baker and Ehle 2001) but would not be valid because 

before the tree is first scarred, it is not available for scarring, and thus cannot record the interval between 

fires.   

Sampling would ideally include taking an entire cross section of the tree in order to most 

accurately cross-date the sample and establish the year of fire (Stokes 1980, Madany et al. 1982, Dieterich 

and Swetnam 1984, Swetnam and Dieterich 1985, Baisan and Swetnam 1990).  Some fires may be 

recorded on only one side of a fire scar (Stokes 1980), therefore an entire cross section would increase 

detection probability.           

Model Assumptions 

 The following are assumptions required in order to make valid inference from the analysis:   

• Sites are geographically closed to fire, i.e., every point in a site experiences the same fires as every 

other point in the same site.   

• Trees are homogenous with respect to detection probability of fires.  This assumption can be 

relaxed if appropriate tree-specific covariates can be identified to model detection probability.     

• Wildfire is not stand-replacing. 

• At least 1 active fire scarred tree can be located in each site.   

When estimating spatial extent of fire: 

• Sites are independent samples. 

• Sites are homogenous with respect to probability of fire occupancy.  This assumption can be 

relaxed if appropriate site-specific covariates can be identified to model yψ .   

•  Sites are homogenous with respect to detection probability of fires.  This assumption can be 

relaxed if appropriate site-specific covariates can be identified to model detection probability. 

When estimating fire return interval: 

• Years are independent samples.   

• Years are homogenous with respect to probability of fire occupancy.  This assumption can be 

relaxed if appropriate year-specific covariates can be identified to model sψ .   



 

  

•  Years are homogenous with respect to detection probability of fires.  This assumption can be 

relaxed if appropriate year-specific covariates can be identified to model detection probability. 

SIMULATION METHODS  

Historical datasets do not allow the investigator control over the probability of fire detection, and 

only allow limited control over the number of recorder trees included in a site (by expanding the size of the 

site).  Furthermore, it is likely that homogeneity assumptions may be frequently violated.  I therefore 

simulated data under a simple site- or year-specific model (i.e., with only 1 analysis group) to determine the 

effect of the number of recorder trees (T), the probability of fire detection (p), and heterogeneity in 

detection across trees in a site on estimator performance.  Data were simulated and analyses of the data 

were conducted in Program MARK 3.2 (White and Burnham 1999), which allows for user-specified 

simulation and analysis of data under the occupancy model.  In all simulations, sample size of number of 

sites (NS) or years (NY) was 100, and the proportion of sites or years occupied was 0.3 (i.e., ψ = 0.3).  

Results of each simulation scenario are based on 6000 simulations.  I calculated relative bias 








   −)
=

ψ
ψE(ψRB , expected variance (EV), mean square error = RB2 + EV, and confidence interval 

coverage (CI coverage) of ψ for each simulation scenario.        

For the first set of simulations, I examined the impact of the number of recorder trees (T) and the 

probability of fire detection (p) on estimator performance for ψ.  I generated data under model p(.), so that 

detection probability was constant across recorder trees within a site and across sites.  I then considered 

various numbers of recorder trees (T) per site, over 4 levels: 2, 3, 4, or 5 recorder trees per site.  I 

simultaneously varied detection probability (p) over 3 levels: 0.25, 0.50, and 0.75.  Therefore, 9 scenarios 

were considered, with each of the combinations of number of recorder trees and detection probability 

levels.  For each simulation, I used the generating model to analyze the data, model p(.).       

I designed a second set of simulations to examine the impact of heterogeneity in detection across 

trees within a site on estimator performance for ψ.  In this case, the detection probability was not constant, 

but varied across recorder trees.  I generated data under model p(t), where detection varied by recorder tree.  

I specified T = 3, and a mean detection probability ( p ) of 0.5.  I then considered 4 different scenarios:  (1) 

p  = 0.5, standard deviation = 0 (no heterogeneity:  p1 = p2 = p3 = 0.50); (2) p  = 0.5, standard deviation = 



 

  

0.05 (low heterogeneity:  p1 = 0.45, p2 = 0.50, p3 = 0.55); (3) p  = 0.5, standard deviation = 0.1 (moderate 

heterogeneity:  p1 = 0.40, p2 = 0.50, p3 = 0.60); and (4) p  = 0.5, standard deviation = 0.2 (high 

heterogeneity:  p1 = 0.30, p2 = 0.50, p3 = 0.70).  I then used model p(.) to analyze the data estimated under 

p(t).      

RESULTS 

 The number of samples in a site (T) had an important impact on relative bias (RB) of ψ.  At low 

numbers of recorder trees and low detection probabilities, there was a positive RB on ψ, i.e., it was 

overestimated (Figure 4.1).  RB on ψ was seriously high (over 0.4) with only 2 recorder trees and p = 0.25.  

This was partly due to a relatively large number of simulations (15%) in which ψ was estimated to be 1.  

This extreme overestimate of ψ occurred in a maximum of less than 0.2% of simulations in all other 

simulation scenarios.  With p = 0.5 and p = 0.75, RB of ψ was under 0.1 for all levels of T.  With p = 0.25, 

at least T = 4 was required to achieve a RB under 0.1.  Results were similar for expected variance (EV) 

(Figure 4.2).  EV of ψ was highest at p = 0.25 with T = 2 and T = 3.  The results for mean square error 

(MSE; Figure 4.3) further illustrate the point that T = 2 and p = 0.25 results in poor performance of the 

estimator of ψ.  Confidence interval (CI) coverage similarly was poor at T = 2 and p = 0.25, although most 

other levels resulted in CI coverage near nominal (Figure 4.4).     

Results from the heterogeneity simulations indicate increasing RB, EV, and MSE with increasing 

levels of heterogeneity (Table 4.2).  The direction of the RB was the same as above, i.e., increasing positive 

bias on ψ with increasing levels of heterogeneity.  CI coverage was near nominal for all heterogeneity 

simulation scenarios.           

DISCUSSION 

Sampling and Analysis Considerations 

 Simulations suggest that obtaining at least 3 recorder trees in a site should be a goal of 

investigators implementing this analysis, unless detection probabilities are known to be high.  Low 

decomposition rates in southwestern ponderosa pine forests should support greater numbers of recorder 

trees in these forests, and some minimum estimates of expected detection probabilities suggest that 

detection probabilities above 0.25 may be possible to achieve.  Fulé et al. (1997) found a maximum 

proportion of recorder trees scarred per year of 63%.  Swetnam (1990) noted that in regional fire years 



 

  

(years where fires were widespread), up to 80% of recorder trees recorded fires.  Swetnam and Dieterich 

(1985) had a maximum of 62-65% of recorder trees scarred in some years.  However, it is important to note 

that each of these studies relied on targeted sampling, seeking out the trees in a landscape which recorded 

the most fires for the longest period, thus these rates may not be as high on a site-by-site basis.  The 

simulations presented here assume that each site would have the same number of recorder trees.  Estimators 

may not perform as well if this represents a mean number of recorder trees with some large variance, i.e., 

some sites have as few as 1 recorder tree, while other sites have more recorder trees.   

 One problematic assumption of the model may be the assumption of independence across sites 

and/or years.  Highly synchronous fire regimes may result in an area where there are few barriers to fire 

spread (Dieterich 1980, Swetnam and Dieterich 1985, Swetnam 1990, Baisan and Swetnam 1990, Fulé et 

al. 1997, Fulé et al. 2003), creating fire regimes that are spatially autocorrelated.  Furthermore, fire regimes 

may be temporally autocorrelated (Morgan et al. 2001), whereby fire burning in year y may influence the 

probability of fire burning in year y + 1 because of fuel consumption in year y.  Such lack of independence 

results in underestimation of uncertainty about the estimated parameters.  One method for dealing with 

spatial autocorrelation is to pick a larger study area and choose sites randomly within it, such that sites are 

not frequently directly adjacent.  Additionally, goodness-of-fit and variance inflation should be an integral 

part of any analysis.  MacKenzie and Bailey (2004) present a general χ2 goodness-of-fit test for the 

occupancy model to determine lack of model fit and to estimate a variance inflation factor ( ĉ ).  The 

calculation of ĉ  is based on the ratio of the calculated χ2 goodness-of-fit statistic to a parametric bootstrap-

based χ2 statistic.  However, the test is most sensitive to assumption violations in p rather than in ψ.  

Especially with sparser data sets, it would be sensibly conservative to inflate variances by ĉ  even if a 

significant lack of fit is not demonstrated by the test statistic.   

An additional potentially problematic assumption is the assumption of homogeneity in probability 

of fire occurrence or detection across sites within a year or years within a site, as well as the assumption of 

homogeneity in detection probabilities across trees within a site.  Application of individual covariates to 

model differences will be useful (discussed below) but all sources of heterogeneity may not be identifiable.  

Eventually, mixture distributions may be applied to the occupancy model to better deal with heterogeneity; 



 

  

though fitting mixture distributions will require higher numbers of recorder trees per site.  Goodness-of-fit 

testing and variance inflation will serve to correct for some degree of extra-binomial variation.   

Applications 

Because the occupancy model is likelihood-based, it lends itself to information-theoretic model 

selection and inferential methods (Burnham and Anderson 2002).  Model selection tools include AIC 

(Akaike’s Infromation Criterion; Akaike 1973), AICc (small sample correction of AIC; Hurvich and Tsai 

1989), or QAICc (when extra-binomial variation is present; Lebreton et al. 1992, Burnham and Anderson 

2002).  Interesting applications of the modeling approach described herein rely on model selection to 

evaluate evidence for hypotheses about mechanisms resulting in fire occurrence and/or scar formation and 

retention.  Here I consider 3 types of predictor variables, those which are tree-specific, site-specific, or 

year-specific.   

Tree-specific covariates could be used to model the fire detection process.  For example, a tree-

specific covariate of interest would be the age of each recorder tree during a given year.  Note that this 

covariate would always be specific to trees within each site (analogous to a time-dependent individual 

covariate in the occupancy model).  Using such a covariate, an investigator could entertain 2 possible 

hypotheses, represented by models p(age) or p(.), that is, formation and retention (detection) of a scar is a 

function of the age of the tree, or it is not.  Model selection methods would allow evaluation of the weight 

of evidence for each of these hypotheses.  Such approaches could allow for better information on the 

mechanisms of fire scar formation (Johnson and Gutsell 1994).    

Site-specific predictors are variables associated with a site that may be related either to fire 

occurrence or detection probability.  These variables will generally apply to all years at a site 

simultaneously.  For example, average slope of a site may have an impact on scarring probability.  Note 

that when these covariates are used in estimation of ψy, the proportion of sites burned in a given year, they 

are individual covariates, that is, they apply to individual encounter histories within a dataset that is 

grouped by year.  Alternately, when these covariates are used in estimation of ψs, the proportion of years 

burned at a given site, they apply to all members of the group of years at a given site.   

Year-specific predictors are associated with a specific year in a dataset, and will generally apply to 

all sites simultaneously.  These variables would be individual covariates when estimating ψs , but group 



 

  

covariates when estimating ψy.  Examples include climate variables (Swetnam 1990) that may be used to 

predict fire events in a given year.  Also, climate variables may influence fire severity and in turn impact 

detection probability.  Additional examples of year-specific covariates include the degree of human 

settlement, or effort spent on fire suppression.  Modeling the impacts of such covariates would allow a 

rigorous analysis of mechanisms resulting in post-European settlement declines in fire occurrence. 

Finally, estimation of variability in fire regimes over time and space is needed (Morgan et al. 

2001).  Random effects and variance components analyses are suited to applications of these kinds, and 

large datasets, with multiple sites and years, would allow for estimation of temporal and spatial process 

variance in fire regime parameters (Burnham et al. 1987).  For instance, variance components analysis of 

multiple computed ψs over a landscape would give an estimate of the variance in fire return intervals over 

space, or similarly, variance components analysis of multiple computed ψy would provide an estimate of 

the variance in area burned over years. 

An empirical analysis based on the modeling framework described here will highlight further 

challenges and opportunities associated with this approach.  Some appropriate data sets may be extant, if 

based on a random sample or census of recorder trees in a study area of interest, where all samples are 

geographically referenced.  I recommend that a random sample or census of recorder trees and geographic 

referencing of samples should be standard practice for all future fire history investigations.  Year-, site-, 

and tree-specific covariates of potential interest should also be identified prior to sampling.   
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Table 4.1.  Example encounter “histories” for estimating mean fire return interval (a) and proportion of area burned (b).  A “0” denotes a fire was not recorded by 
a given recorder tree, a “1” denotes a fire was recorded.       
 
Scenario Site Year Recorder A Recorder B Recorder C Recorder D 

a A 1 0 1 1 0 

 A 2 0 0 0 0 

 A 3 0 0 NAa NA 

 A 4 0 1 0 1 

 A 5 0 0 0 0 

 A 6 1 1 0 NA 

 A 7 0 0 0 NA 

 A 8 1 1 NA NA 

b A 1 0 1 1 0 

 B 1 0 0 0 0 

 C 1 0 0 NA NA 

 D 1 0 1 0 1 

 E 1 0 0 0 0 

 F 1 1 1 0 NA 

 G 1 0 0 0 NA 

 H 1 1 1 NA NA 

aFor illustration, NA denotes a recorder tree that was Not Active during a particular site/year combination.   
 



 

  

Table 4.2.  Simulation results (n = 6000 for each level) for proportion occupied at 4 levels of heterogeneity in within-site detection rates.  Results are based on 3 
recorder trees per site.  At no heterogeneity, p1 = p2 = p3 = 0.5.  At low heterogeneity, p1 = 0.45, p2 = 0.5, p3 = 0.55.  At moderate heterogeneity, p1 = 0.4, p2 = 0.5, 
p3 = 0.6.  At high heterogeneity, p1 = 0.3, p2 = 0.5, p3 = 0.7.   
 
Heterogeneity Level Relative Bias Expected Variance Mean Square Error CI Coverage 

None ( p = 0.5, SD = 0) 0.0162 0.0030 0.0033 0.9517 

Low ( p = 0.5, SD = 0.05) 0.0223 0.0031 0.0036 0.9553 

Moderate ( p = 0.5, SD = 0.1) 0.0287 0.0031 0.0039 0.9463 

High ( p = 0.5, SD = 0.2) 0.0606 0.0033 0.0070 0.9537 
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Figure 4.1.  Relative bias (RB) in proportion of sites occupied (n = 6000 simulations), under 3 levels of detection probability (p) and 4 levels of number of 
recorder trees per site (t).  Simulations are based on a true ψ = 0.3 = 30% of 100 sites occupied.  White bars represent p = 0.25, black bars represent p = 0.50, and 
striped bars represent p = 0.75.   
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Figure 4.2.  Expected variance (EV) of proportion of sites occupied (n = 6000 simulations), under 3 levels of detection probability (p) and 4 levels of number of 
recorder trees per site (t).  Simulations are based on a true ψ = 0.3 = 30% of 100 sites occupied.  White bars represent p = 0.25, black bars represent p = 0.50, and 
striped bars represent p = 0.75.   
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Figure 4.3.  Mean square error (MSE) of proportion of sites occupied (n = 6000 simulations), under 3 levels of detection probability (p) and 4 levels of number of 
recorder trees per site (t).  Simulations are based on a true ψ = 0.3 = 30% of 100 sites occupied.  White bars represent p = 0.25, black bars represent p = 0.50, and 
striped bars represent p = 0.75.   
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Figure 4.4.  Achieved confidence interval coverage (Coverage; 95% nominal) for proportion of sites occupied (n = 6000 simulations), under 3 levels of detection 
probability (p) and 4 levels of number of recorder trees per site (t).  Simulations are based on a true ψ = 0.3 = 30% of 100 sites occupied.  White bars represent p 
= 0.25, black bars represent p = 0.50, and striped bars represent p = 0.75.   


