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[1] We have conducted surveys of gullies that developed in a small, steep watershed in
the Idaho Batholith after a severe wildfire followed by intense precipitation. We measured
gully length and cross sections to estimate the volumes of sediment loss due to gully
formation. These volume estimates are assumed to provide an estimate of sediment
transport capacity at each survey cross section from the single gully-forming
thunderstorm. Sediment transport models commonly relate transport capacity to overland
flow shear stress, which is related to runoff rate, slope, and drainage area. We have
estimated the runoff rate and duration associated with the gully-forming event and used
the sediment volume measurements to calibrate a general physically based sediment
transport equation in this steep, high shear stress environment. We find that a shear stress
exponent of 3, corresponding to drainage area and slope exponents of M = 2.1 and
N = 2.25, match our data. This shear stress exponent of 3 is approximately 2 times higher
than those for bed load transport in alluvial rivers but is in the range of shear stress
exponents derived from flume experiments on steep slopes and with total load equations.
The concavity index of the gully profiles obtained theoretically from the area and slope
exponents of the sediment transport equation, qc = (M � 1)/N, agrees well with the
observed profile concavity of the gullies. Our results, although preliminary because of the
uncertainty associated with the sediment volume estimates, suggest that for steep
hillslopes such as those in our study area, a greater nonlinearity in the sediment transport
function exists than that assumed in some existing hillslope erosion models which
calculate sediment transport capacity using the bed load equations developed for
rivers. INDEX TERMS: 1815 Hydrology: Erosion and sedimentation; 1824 Hydrology: Geomorphology

(1625); 1821 Hydrology: Floods; 1625 Global Change: Geomorphology and weathering (1824, 1886);
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1. Introduction

[2] Gullies are unstable, eroding channels formed at or
close to valley heads, sides, or floors [Schumm et al., 1984].
They usually differ from stable river channels in having steep
sides, low width to depth ratios, and a head cut at the upslope
end [Knighton, 1998]. The main causes of gully erosion are
natural and anthropogenic effects that increase runoff pro-
duction on hillslopes and/or reduce the erosion resistance of
the soil surface. Some of these causes are the clearing of
natural forests [Prosser and Slade, 1994; Prosser and Soufi,
1998], agricultural treatments and grazing [Burkard and
Kostaschuk, 1995; Vandekerckhove et al., 1998; Vandekerck-
hove et al., 2000], climate change [Coulthard et al., 2000],

and road construction [Montgomery, 1994; Wemple et al.,
1996; Croke and Mockler, 2001]. Recent field observations
of postfire erosion events in steep mountain drainages in the
western United States also show that large pulses of sediment
could be produced due to gully erosion [Meyer et al., 2001;
Meyer and Wells, 1997; Cannon et al., 2001].
[3] There are two main stages of gully development: the

incision stage, and the stability or infilling stage [Sidorchuk,
1999]. The initiation stage of gully erosion is often the most
critical stage from a land management perspective, because
once the gullies have initiated and developed it is difficult to
control gully erosion [Prosser and Soufi, 1998; Woodward,
1999].
[4] In this paper we study the mechanistic behavior of

sediment transport on steep mountains using gully erosion
observations in a highly erodible steep forested basin in
Idaho. These gullies were developed in a single rainstorm
after a severe wildfire. We first theoretically adapt a general
dimensionless sediment transport capacity equation to incis-
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ing gullies by relating flow shear stress and width to
contributing area and slope assuming steady state runoff
generation and turbulent uniform flow conditions. The
dimensionless sediment transport capacity relationship we
used has two empirical parameters that need to be calibrated
against data. We then present our field data comprising
sediment volumes estimated from gully cross sections.
Following this we calibrate the empirical parameters of
the sediment transport equation to this field data and
compare the results with the parameter ranges published
in the literature.

1.1. Sediment Transport Review: Functional Form
and Implications

[5] Sediment transport rate is often described as a power
function of discharge and slope, or of shear stress [Kirkby,
1971; Julien and Simons, 1985; Nearing et al., 1997]:

Qs ¼ k1Q
MSN ð1Þ

Qs ¼ k2 t� tcð Þp; ð2Þ

where Qs is the rate of sediment transport in a channel, Q is
water discharge, S is slope, t is the average bottom shear
stress, t = rwgRS, where R is the hydraulic radius, rw is
water density, and g is gravitational acceleration. The tc is
critical shear stress for incipient motion, k1 is a rate
constant, and k2 is a transport coefficient. M, N, and p are
model parameters. These functional forms are interchange-
able when shear stress is written as a function of discharge
and slope, t / (Q, S) [Willgoose et al., 1991a; Tucker and
Bras, 1998].
[6] Many equations that describe sediment transport as a

function of shear stress such as those of Meyer-Peter and
Muller [1948] and Einstein-Brown and empirical total load
sediment transport equations, for example, the Engelund
and Hansen equation and the Bishop, Simons, and Richard-
son’s methods, can be written in the form of equation (2)
[Garde and Raju, 1985; Chien and Wan, 1999]. This
equation is essentially based on the relationship between
dimensionless sediment transport rate qs* and dimensionless
shear stress t*. Dimensionless sediment transport rate is
commonly expressed as a nonlinear function of dimension-
less shear stress in the form

q
s* ¼ btp

*
ð3Þ

where

q
s* ¼ qsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g s� 1ð Þd3
p ð4aÞ

t* ¼ t= rwgð Þ
s� 1ð Þd ð4bÞ

b ¼
k 1�

t*c
t*

� �pb

t* > t*c

0 otherwise

8><
>: : ð4cÞ

In these equations, qs is the unit sediment discharge that could
be either bed or total load; b is a dimensionless transport rate;
s is the ratio of sediment to water density (rs/rw); d is
dominant grain size, often taken as the median, d50; t*c is
dimensionless critical shear stress; the calibration parameters
are k, p, and pb, and usually p = pb. Dimensionless critical
shear stress t*c is related to critical shear stress tc through
equation (4b), similar to the nondimensionalization of shear
stress. Yalin [1977] showed that k is 17 at high values of t

*
for bed load transport. Many k values were reported in the
range of 4–40 in different equations [Simons and Senturk,
1977; Yalin, 1977]. The shear stress exponent p is
consistently 1.5 for bed load equations developed for gentle
slopes, while in total load equations it varies from relatively
low values of p ffi 1.5 up to p = 3 depending on the mode of
transport. Lower shear stress exponents correspond to
predominantly bed load transport, and the higher values
correspond to suspended sediment transport in the total load.
Equation (3) does not fully describe the suspended load
transport physics, and higher shear stress exponents for total
load account for the additional sediment discharge due to
suspended sediment in the same functional form used for bed
load [Garde and Raju, 1985]. Nevertheless, total load
equations in the form of equation (3) are easy to use and
provide reasonable sediment transport capacity estimates
[Simons and Senturk, 1977].
[7] Equation (1) has mathematical and computational

advantages and is often used in landscape evolution
models [Smith and Bretherton, 1972; Tarboton et al.,
1992; Hancock and Willgoose, 2001]. The discharge and
slope exponents M and N in (1) are in the range of 1–2.5
[Julien and Simons, 1985; Everaert, 1991; Rickenmann,
1992; Nearing et al., 1997]. The exponents M and N have
significant impacts on hillslope evolution, drainage den-
sity, and landscape morphology [Band, 1990; Arrowsmith
et al., 1996; Tucker and Bras, 1998]. They influence
landscape response timescales, duration and timing of
erosional response, the sensitivity of mountain range relief
to tectonic uplift, and the relief-uplift relationship [Whipple
and Tucker, 1999; Niemann et al., 2001; Tucker and
Whipple, 2002].
[8] One of the long-term implications of a sediment

transport relationship is the observed power law scaling of
slope with contributing area, S / A�qc, where qc is the
concavity index often in the range of 0.37–0.83 with a
mean of 0.6 [Tarboton et al., 1991]. For the case of dynamic
equilibrium when the tectonic uplift is balanced by transport
limited erosion, the power law relationship between local
slope and upslope area is theoretically [Willgoose et al.,
1991b; Tarboton et al., 1992]

S ¼ U

k1

� �1=n

A�qc ; qc ¼
M � 1

N
; ð5Þ

where U is tectonic uplift or an average degradation rate and
A is drainage area used as a proxy for discharge in the
sediment transport equation (1). Some observations suggest
that there may not be a great difference between the
concavity of steady state and nonsteady state mountain
basins. The Appalachians are believed to be in a state of
decline, and yet Appalachian river basins reveal concavity
indices consistent with the range often observed in steady
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state topographies [Willgoose, 1994; Tucker and Whipple,
2002]. Discharge and slope exponents are the fundamental
parameters of erosion and sediment transport and are related
to the scale properties of landscape and river evolution used
in landscape evolution research. Thus they are deserving of
study via both fieldwork and modeling [Rodriguez-Iturbe
and Rinaldo, 1997; Tucker and Whipple, 2002].

1.2. Sediment Transport on Steep Slopes

[9] Steep flume experiments suggest that bed load sedi-
ment transport can be described using equation (1) both for
gentle and steep slopes when information about grain size
and density is included in the equation [Rickenmann, 1991,
1992; Mizuyama, 1977; Mizuyama and Shimohigashi,
1985; Smart and Jaeggi, 1983]. A bed load transport
equation was developed by Smart and Jaeggi [1983] based
on their steep flume experiments using clear water and slope
range 3–20% and the data of Meyer–Peter and Muller.

qs ¼
4

s� 1ð Þ
d90

d30

� �0:6

1�
t*c
t*

� �
qrS

1:6; ð6Þ

where qr is the reduced unit discharge (corrected for
sidewall influence) and d90 and d30 are the grain sizes at
which 90% and 30% by weight of the sediment is finer.
Smart [1984] suggested that for coarse alluvial sediments
(mean grain size greater than 0.4 mm), observed sediment
transport can be regarded as total load or the sediment
transport capacity.
[10] Rickenmann [1991, 1992] conducted steep flume

experiments using clay suspension as transporting fluid
and analyzed his data with Smart and Jaeggi’s data. He
reported the following equation for both clear water and
hyperconcentrated flows for slopes between 5% and 20%:

qs ¼
12:6

S � 1ð Þ1:6
d90

d30

� �0:2

qr � qcrð ÞS2 ð7Þ

qcr ¼ 0:065 s� 1ð Þ1:67g0:5d1:520 S
�1:12; ð8Þ

where qcr is the critical discharge for the initiation of
sediment motion. Equation (7) was originally proposed by
Bathurst et al. [1987] and was slightly modified by
Rickenmann to include the density factor (s � 1).
Rickenmann noted that as slopes increase, the exponents
for (s � 1) and S should increase as well. This observation
was also supported by steep flume data of Mizuyama and
Shimohigashi [1985], who predicted qs / S2/(s � 1)2

[Rickenmann, 1991].
[11] An inconsistency in equations (6) and (7) compared

to other sediment transport studies on the same slope ranges
is the discharge exponent. Nearing et al. [1997] combined
experimental data for slopes between 0.5% and 30% and
reported results in the form of (1) that consistently show a
discharge exponent greater than 1.5. Equation (6) is linear
with discharge, whereas equation (7) is linear for discharge
in excess of a threshold. We do not know if median
sediment size and density ratio factors considered in (4)
and (6) account for the nonlinearity of sediment transport
with respect to discharge that Nearing et al. [1997] found. A

linear dependence of sediment transport on discharge has
implications for erosion and landscape evolution dynamics.
In the landscape form stability theory of Smith and Breth-
erton [1972], channels and concave hillslope profiles form
when M > 1. In equation (5), M = 1 gives qc = 0, which
implies a constant slope or a planar topography. Such results
can also be obtained from landscape evolution simulation
experiments [Willgoose, 1989; Tucker and Bras, 1998].
Erosion will be less sensitive to hydrology when M = 1
instead of M > 1.5, and thus erosion and landscape response
to changes in hydrology (e.g., climate change, deforesta-
tion) will be less severe.
[12] An appropriate sediment transport relationship for

steep mountainous settings should characterize the erosion
dynamics and accurately predict the spatial and temporal
erosion rates. It should also characterize the long-term
implications of erosion on landscape evolution such as
the concavity of the channel network, its three-dimensional
(3-D) texture and terrain properties compared to the observed
mountain topography [Hancock et al., 2001]. Thus, for the
sediment transport equations developed from flume experi-
ments to be applicable in geomorphologic modeling, they
need to be calibrated and revised using field observations on
scales relevant to the processes of interest. Long-term impli-
cations of selected sediment transport and erosion functions
on large-scale landscape evolution need to be tested.

2. Sediment Transport Capacity of
Eroding Gullies

2.1. Theory

[13] The dimensionless sediment transport capacity equa-
tion (3) is adapted for gully erosion describing basin
hydrology and flow hydraulic characteristics as a function
of contributing area and slope. Steady state discharge Q is
proportional to runoff rate r and contributing area A,

Q ¼ rA: ð9Þ

Hydraulic radius R is a function of flow cross-sectional area
Af [Foster et al., 1984; Moore and Burch, 1986],

R ¼ CA0:5
f ; ð10Þ

where C is a shape constant (see Appendix A). Af is
discharge divided by flow velocity and is estimated as a
function of discharge by assuming steady turbulent uniform
flow and using Manning’s equation for flow velocity.
Manning’s roughness n is approximated as a function of
discharge Q [Leopold et al., 1964; Knighton, 1998],

n ¼ knQ
�mn ; ð11Þ

where kn and mn are empirical parameters. In Manning’s
equation this gives the flow cross-sectional area as

Af ¼ k0:75n C�0:5Q0:75 1�mnð ÞS�0:375: ð12Þ

Substituting (12) into (10) gives hydraulic radius as a
function of Q and S. Flow cross-sectional area, hydraulic
radius, effective shear stress, and flow width are all written
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proportional to discharge and slope (Appendices B and C)
in the general form (Table 1),

Y ¼ cY rAð ÞmYSnY ; ð13Þ

where y represents the hydraulic variable of interest and cy
is a constant relating the hydraulic variable to discharge and
slope, and my and ny are theoretically derived exponents
(Table 1).
[14] The general sediment transport capacity equation is

derived by substituting the shear stress relationship (Table 1)
into (4b) and (4b) into (4c), and substituting (4a), (4b), and
(4c) into (3) and solving for qs and finally multiplying qs
with the flow width (Table 1):

Qs ¼ kc�1
c cWcp

td
1:5�p 1� tcc�1

t

	

rAð Þ�mtS�ntÞp� rAð ÞMSN ;

ð14Þ

where, cc = rw
p(g(s � 1))p � 0.5, M = pmt + mW, and N =

pnt + nW. The term in brackets provides the theoretical basis
for k1 in (1) and is independent of discharge when tc = 0.
This could be a practical assumption for the incision stage
of gullies as long as a channel initiation threshold controls
gully initiation. The two calibration parameters that appear
in the equation are k and p.

2.2. Calibration Methodology

[15] Sediment transport equations in the form of (3) are
often calibrated using data from flume experiments and
rivers [Yalin, 1977]. In such experiments, parameters k and
p are obtained from qs* and t* pairs that are measured
throughout the experiments. Here we developed a procedure
to obtain the calibration parameters k and p for gully
sediment transport based on Qs* and t* pairs estimated
from geomorphic field observations in gullies. We measured
gully erosion volumes in a mountainous watershed
(described later) that was recently gullied due to a thunder-
storm whose magnitude and duration are approximately
known. We assumed that once a gully was incised the
sediment transport rate was at its transport capacity. This
transport-limited erosion assumption is consistent with the
flume experiments of rills and gullies for cohesionless
sediments in the case of unlimited sediment supply
[Cochrane and Flanagan, 1997; Bennett et al., 2000]. On
the basis of this assumption the average unit sediment
discharge of a particular flow cross section in the gully
can be approximated by the total volume of sediment
passing that point Vs (volume of total estimated erosion
that originated from the upslope contributing area) divided
by the total erosion duration T, and flow width Wf,

qs ¼
Vs

TWf

: ð15Þ

Writing Wf as a function of area and slope (13) and
substituting (15) into (4a), we obtain the dimensionless
sediment transport rate of a particular flow cross section as a
function of sediment volume passing that cross section (field
observation), upslope contributing area, and the local slope as

q
s* Vs;A; Sð Þ ¼ Vs

TcW rAð ÞmW SnW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g s� 1ð Þd3

p : ð16Þ

Similarly substituting the shear stress as a function of area
and slope (13) into (4b), we have the dimensionless shear
stress described in terms of area and slope

t* A; Sð Þ ¼ ct rAð ÞmtSnt

rwg s� 1ð Þd : ð17Þ

Now with p = pb,equation (4c) in (3) gives

q
s* ¼

k t* 1� t*c=t*
	 �	 �p t* > t*c

0 otherwise

:

8<
: ð18Þ

We denote t0* = t* (1 � t*c/t*) and obtain the empirical
parameters k and p by plotting the observed qs* versus t*

0

and fitting a power function. This calibration procedure
requires field estimates of three spatially distributed
quantities (Vs, A, and S) at different points along the gullies,
estimates of the other sediment transport model parameters
in (14) (see Table 3 below), and the erosion duration T and
runoff rate r for the gully incising runoff event. In the
following sections we describe our field area and the
methods used to estimate these quantities.

3. Field Study

[16] The sediment transport capacity equation described
above has been calibrated using field data from the Idaho
Batholith region. This region consists of an extensive
mass of granitic rock approximately 41,400 km2 in size
that covers a large part of forested, mountainous central
Idaho and adjacent Montana. Valleys are typically narrow
and V-shaped. Erodible coarse textured soils are found on
steep gradients that often exceed 70% [Megahan, 1974].
Colluvium that accumulates in hollows and steep head-
water channels is episodically evacuated by gullying and
debris slides [Kirchner et al., 2001]. Average annual
precipitation is approximately 1000 mm. Localized high-
intensity rainstorms (25–50 mm/h) of short duration (<0.5
hour) occur during summer. At other times of the year
more widespread storms occur, often in conjunction with
snowmelt. Following soil disturbance and wildfires, the
combination of steep topography, high soil erodibility, and
high–intensity summer thunderstorms or rapid snowmelt
often results in accelerated surface erosion and landslides
[Megahan and Kidd, 1972; Meyer et al., 2001].
[17] The specific study area selected is Trapper Creek

within the North Fork of the Boise River in southwestern
Idaho (see Figure 1). Trapper Creek was intensely burned by
a wildfire in 1994, and extreme gullying occurred during a
convective summer storm in 1995, due possibly to water-
repellent conditions of the surface soil. On the average the
gullies were 1–2 m deep and 3–4 m wide. Relatively narrow
cross sections were observed at sites where all the colluvium

Table 1. Physical Parameters of the Generic Hydraulic Variable

Equation, Y = cYQ
mYSnY.

y cy my ny

Flow cross-sectional
area, Af

kn
0.375C�0.5 0.75(1 � mn) �0.375

Hydraulic radius, R kn
0.375C 0.75 0.375(1 � mn) �0.1875

Flow width, Wf ks kn
0.375C�0.25 0.375(1 � mn) �0.1875

Effective shear stress, tf rwgC
0.75kn

�1.13ngc
1.5 0.375 + 1.13mn 0.8125
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was scoured to bedrock. Widening of the gully cross sections
was due to sidewall collapse at most of the sites. Cobbles and
boulders up to 0.3 m in diameter, which were presumably
introduced by sidewall collapse, were deposited downstream
of the sidewall failure. Other than these coarse materials no
significant deposition was observed in the gullies.
[18] In the field we recorded the locations of channel

heads, gully heads, and heads of the continuous gullies.
Here channel head refers to the most upstream limit of
erosion within definable banks, whereas gully head refers to
the sequential head cuts observed downstream from the
channel head where gullies were discontinuous. The con-
tinuous gully head refers to the head cut below which the
gully is continuous. In order to estimate the volume of
eroded material from the gullies we estimated the preerosion
surface by projecting the side slopes into the eroded gully
trough and measured the gully cross-sectional area below
this estimated preerosion surface at locations spaced on the
average at 30 m. All significant sediment scours observable
in the discontinuous gully reaches were also measured.
Slope measurements were taken at each measurement
location over a length of 10–20 m. This measurement
protocol was applied for distances ranging between 150
and 500 m downslope from gully heads in four different
gullies including one discontinuous gully. The field data
collected are reported in Table 2.

4. Field Estimates for the Parameters of qs*
and T

0
*

[19] Gully erosion volumes between successive gully
cross sections were calculated by multiplying the distance

between the two cross sections by the average cross-sec-
tional area. Total sediment passing a particular cross section,
Vs, is then estimated by accumulating all the upslope
erosion measurements along the gully profile down to that
particular point. Calibration of the sediment transport theory
requires two topographic variables, the contributing area
and local slope at each measurement location. Slope was
measured in the field. Contributing area was derived from
the 30 m U.S. Geological Survey (USGS) digital elevation
model (DEM) (level 2) of the study site using the D1
algorithm [Tarboton, 1997]. There was a forest road
located upslope from the gullies that influenced drainage.
We used the mapped road flow directions and road
structures to detect road-induced abnormalities. For gully
Tr.15 (Figure 2), 25,000 m2 of additional contributing area
was added due to the road drainage from the surrounding
hillslopes. The plotting of qs* versus t*

0 described above
also requires the estimates of median sediment size of the
eroding material d, runoff rate r, erosion duration T,
Manning’s roughness for grains ngc, parameters kn and mn

for the total channel roughness estimates from discharge,
and channel shape and cross-sectional parameters. All of
these parameters could vary in space and time as gullies
erode; however, we made estimates based on field
observations to characterize the average conditions as
described below. The parameters and the basis for their
estimation are summarized in Table 3.
[20] We measured an average median sediment size of

2 mm for the surface sediment in Trapper Creek on hill-
slopes surrounding the gully heads. Sediment sizes visually
observed on the gully walls were coarser than a median
sediment size of 2 mm due to the increased fraction of

Figure 1. Location map of the study area and the four gullies studied in the field. In the figure, ‘‘Tr.’’ is
an abreviation for Trapper Creek, and the number following ‘‘Tr.’’ is the gully numbered in the field.
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gravel. Published studies [Megahan, 1992; Gray and
Megahan 1981; Meyer et al., 2001] that have examined
sediment size in the Idaho Batholith all report that median
sediment size is typically in the range of coarse sand and
fine gravel. Therefore we used a median sediment size of
3 mm for gully sediment transport.
[21] We used a commonly accepted value of 0.045

[Suszka, 1991] for the dimensionless critical shear stress
for incipient motion, t*c. This value is consistent with the
t*c values reported by Buffington and Montgomery [1997]
for coarse sand and fine gravel. Under the high shear
stresses common on steep slopes the choice of t*c does
not have very much influence on sediment transport.
[22] Although the rainfall rate of the storm that incised

the channels in Trapper Creek was not measured, Forest
Service personnel exposed to the storm estimated that more
than an inch of rain fell in less than half an hour. The nearby
Prairie rain gage has 35 mm for the largest 30-min event in a
23-year record, i.e., a rate of 70 mm/h. We assumed that the
Trapper event was of this order of magnitude and selected a
steady state runoff rate of 35 mm/h assuming about 50%
infiltration due to the water repellency remaining a year
after the wildfire. This information was also the basis for the
estimate of the uniform probability distribution for instanta-
neous runoff rates used by Istanbulluoglu et al. [2002] to
calculate the probability of channel initiation for the same
event in Trapper Creek. Using different runoff rates in the
calibration affects the k constant slightly but has no
influence on the shear stress exponent p. In the area,
convective summer storms often last less than or approxi-
mately half an hour. We assumed that all the gully incisions
occurred in T = 0.5 hour.
[23] Grain roughness (ngc) for fine gravel is selected as

0.025 [Chow, 1959; Arcement and Schneider, 1984]. The at-
a-station Manning’s roughness relationship (equation (11))
gives total roughness n as a function of parameters kn, mn,
and discharge, which in our case is obtained from runoff
rate and contributing area [Leopold et al., 1964; Knighton,
1998]. In Tr.19 we observed small boulders up to 300
mm in diameter, exposed rocks on the sides of the
channel, and logs at several locations along the gully
channel. On the basis of these observations we rated the
degree of irregularity of the channel and the effects of
obstructions as ‘‘severe’’ for the gully-incising event.
Additional Manning’s roughness values nac for such
conditions can be in the range of 0.05–0.1 [Chow,
1959; Arcement and Schneider, 1984], which yields total
roughness, n = ngc + nac, in the range 0.075–0.125. In the
surveyed sections of Tr.19 the discharge is calculated to
be in the range 0.15–1.9 m3/s. We therefore estimated kn =
0.08 in equation (11) to match this total roughness range.
We took kn = 0.045 for the rest of the gullies (Tr.5, Tr.15,
Tr.18) where channels were relatively clear of obstruc-
tions. This results in additional roughness values in the
range of 0.015–0.055 for the calculated discharge range
of 0.05–2.2 m3/s. This range corresponds to moderate to
severe effect of obstructions for the gully-incising event
[Chow, 1959; Arcement and Schneider, 1984]. The field
observed gully width to depth ratio was roughly 2, and
gully cross sections could be considered to be roughly
parallel. A parabolic flow cross section with a width to
depth ratio of 2 was used to obtain the shape parameters

Table 2. Gully Erosion Data Collected in the Study Site

Gully Number
Drainage
Area, m2

Local Slope,
m/m

Total Gully
Erosion, m3

Tr.05 5,460 0.36 1.9
6,690 0.35 16.8
9,000 0.55 35.7
9,600 0.55 65.7
12,000 0.55 103.4
12,900 0.55 115.3
16,500 0.28 147.9
22,500 0.55 196.9
24,000 0.55 212.4
27,600 0.53 223.3
30,000 0.50 240.5
33,600 0.35 264.0
34,440 0.33 312.1

Tr15 17,040 0.34 189.5
18,900 0.39 503.3
20,880 0.45 573.2
25,680 0.55 753.2
30,780 0.50 934.7
34,950 0.49 987.2
46,800 0.41 1,089.1
50,940 0.40 1,323.9
46,260 0.49 1,671.3
83,760 0.32 2,760.8
89,640 0.40 3,589.7

Tr.18 6,300 0.51 0.36
8,700 0.47 0.44
9,000 0.61 0.89
15,660 0.60 2.79
19,020 0.64 12.29
22,500 0.65 23.70
24,000 0.50 34.07
26,190 0.50 38.87
42,000 0.60 58.87
45,300 0.40 95.77
61,620 0.4 178.27
69,900 0.44 358.27
74,880 0.43 478.27
81,000 0.35 652.27
100,200 0.29 936.27
102,000 0.29 1,126.27
107,130 0.3 1,696.27
115,860 0.37 2,576.27
135,000 0.3 3,176.27
158,430 0.28 3,921.27
210,000 0.2 4,946.27
253,680 0.13 6,096.27
268,890 0.24 7,176.27
276,000 0.24 8,046.27

Tr.19 18,000 0.45 16.5
38,610 0.48 33.5
46,800 0.46 67.0
54,000 0.45 116.5
60,000 0.4 144.0
74,550 0.4 171.5
87,000 0.35 177.6
90,000 0.35 207.2
94,260 0.45 248.2
120,000 0.32 273.2
125,790 0.31 299.7
150,000 0.18 418.4
156,480 0.19 572.4
166,740 0.2 604.2
188,070 0.18 624.4
198,750 0.17 633.9
210,000 0.16 680.3
216,480 0.2 708.5
222,000 0.18 827.5
228,000 0.23 887.0
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C and ks used to calculate the flow width and shear stress
in eroding gullies.
[24] The area and slope exponents for shear stress (mt =

0.6, nt = 0.8125) and the flow width (mw = 0.3, nw =
�0.1825) are calculated using the expressions derived in
Appendices B and C and given in Table 1 with a selected
mn = 0.2 [Knighton, 1998].
[25] The presence of sediment at high concentrations in

the flow may change the fluid properties, decrease the flow
velocity, and increase its depth [Aziz and Scott, 1989]. As
the sediment concentration increases, flow hydraulics
becomes much more complicated compared to clear water
flow due to the interactions among solid particles
[Hashimoto, 1997; Jan and Shen, 1997]. There is theoretical
and experimental evidence, however, that even debris flows
can be regarded as a special type of flow that can be
described by similar hydraulic formulations such as
Manning’s and Chezy’s equations for flow velocity [Rick-
enmann, 1999]. In this paper, flow velocities and shear
stresses are calculated assuming the hydraulic properties of
clear water flow.

5. Results and Discussions

[26] The relationship between qs* and t*
0 obtained using

the field data is presented in Figure 2. The figure also plots
the fitted power function relationship in the form of (3) with
k = 20 and p = 3. The Meyer-Peter Muller and Govers
sediment transport relationships were also plotted on

Figure 2 for comparison with the fitted relationship. Details
of these equations are given below. All the data points
except for the first 13 points of Tr.18 show good
correspondence with the theoretical derivations.
[27] The major sources of sediment discharge in gullies

are sediment detachment from the bed, widening by under-

Figure 2. Relationship between qs* and t*
0 obtained using the field observations. The solid lines are

fitted power relationships in the form of equation (3).

Table 3. Parameters Used in the Estimation of Dimensionless

Sediment Flux and Dimensionless Shear Stress

Parameter Value Basis

d 3 field observations and literature
t*c 0.045 Suzka [1991]
r 35 mm/h field estimate; Istanbulluoglu et al. [2002]
T 0.5 h field estimate
ngc 0.025 fine gravel; Chow [1959], Arcement and

Schneider [1984]
kn 0.08, 0.045 estimated to match field roughness range

with calculated discharge range
mn 0.2 Knighton [1998]
C 0.346 equation (A4) with z1 = 2
ks 1.73 Appendix C for parabolix channels

with z1 = 2
mt 0.6 Appendix B with mn = 0.2
nt 0.8125 Appendix B
mw 0.3 Appendix C with mn = 0.2
nw �0.1825 Appendix C
g 9.81 m/s2 physical constant
s 2.65 quartz specific gravity
rw 1000 kg/m3 physical constant
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cutting, and side-slope failures [Selby, 1993]. In Figure 2,
thirteen data points (circled by dashed line) from gully Tr.18
fall significantly below the trend of the fitted dimensionless
sediment transport capacity curve. The first four data points
represent the sediment transport in the first 60 m of the gully
reach starting from the channel head that has two
discontinuous channel segments each about 30 m long
and 5–20 cm deep. No side-slope failures were observed,
and sediment input to the flow was presumably due to
sediment detachment from the bed and partly from the walls
of the channels. Downslope of the discontinuous channel
segment the gully is continuous and incision depths start
increasing abruptly and reach to about 1.20 m at about 120
m downslope from the channel head. Beyond this point
side-slope failures were observed at short intervals.
Presumably these subsequent side failures supplied con-
siderable sediment to the flow, which reached its transport
capacity (Figure 2). The growth of Tr.18 was evidently
slower than the other gullies where significant scour was
observed in relatively short distances. Since the qs* � t*

0

pairs plotted in Figure 2 were calculated assuming
channeled sediment transport, it is consistent that detach-
ment around the flow cross section and supply-limited
channel segments would plot below the transport capacity
relationship.
[28] The dimensionless shear stress exponent p we

found is consistent with the total load equations in the
form of (3). The theory uses spatially distributed obser-
vations of gully erosion volumes, drainage areas, and
slopes and assumes that the rest of the model inputs are
spatially constant. Therefore qs* and t* used in Figure 2

(equations (16) and (17)) are scaled quantities of the field
observations as

q
s* / VS

AmwSnw
ð19Þ

t* / AmtSnt : ð20Þ

The fitted exponent p is therefore insensitive to the
uncertainties in the parameters used in nondimensionaliz-
ing these quantities, while the coefficient k is sensitive to
parameter uncertainty. However, the k value we found
(Figure 2) using the reported parameters (Table 3) is in the
range of the k values reported in the literature [Simons and
Senturk, 1977; Garde and Raju, 1985]. Figure 3 plots
direct field observations of Vs/A

0.3S�0.1875 used as a
surrogate for sediment discharge, versus A0.6S0.8125 used
as a proxy for shear stress. A power relationship with an
exponent p = 3 has been fit to this data,

Vs

A0:3S�0:1875
/ A0:6S0:8125

	 �3
: ð21Þ

The outliers in Figure 2 were excluded from the plot since
the tested theory is for sediment transport capacity
conditions. Except for Tr.19, where rougher channel
conditions were observed, the data plot close to the same
curve (solid line in Figure 3). Tr.19 data plot below the
rest of the data but shows the same functional form (21)
(dashed line). When the roughness of Tr.19 is character-

Figure 3. Field observations of Vs/A
0.3S�0.1875 used as a surrogate for sediment discharge versus

A0.6S0.8125 used as a proxy for shear stress.
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ized with a higher constant, all the data collapse on to one
functional relationship equation (3) (Figure 2). Figure 3
shows the field evidence that sediment transport capacity
on steep gullies is a nonlinear function of shear stress with
p = 3. Figure 3 also indicates that sediment transport
capacity is reduced with the rougher conditions observed
in Tr.19. This is theoretically described in equations
(B3)(B6)–(B7), which show that as the total roughness
coefficient increases due to additional roughness elements
such as nontransportable grains and obstructions, the
fraction of the shear stress acting on transported grains
decreases and reduces the sediment transport rate.
[29] In many hillslope erosion models [Lane and Near-

ing, 1989; Woolhiser et al., 1990; Coulthard et al., 2000]
the transport capacity of overland and rill flows is
represented by adopting existing bed load equations
developed from observations of alluvial rivers and channels
[Julien and Simons, 1985]. The hydraulic conditions of
shallow flows on steep slopes can be different from much
deeper channel flows [Abrahams and Parsons, 1991; Ferro,
1998]. Govers [1992] tested the performance of a number of
bed load equations using his data set obtained simulating rill
flow on slopes ranging from 1.7% to 21% in a laboratory
flume and other data sets giving the sediment transport
capacity of overland flow. He found that bed load equations
are inappropriate for overland flow on slope ranges steeper
than they were originally developed. He suggested that

overland flow does not necessarily show a bed-load-type
transport behavior and that the shear stress exponent p in (2)
should be
2.5 for the transport capacity of shallow flows on
steep slopes. In Govers’s equation, the exponent p = 2.5
therefore accounts for both suspended and bed load
transport. In order to test Govers’s conclusions, we compared
the Meyer-Peter and Muller and Govers sediment transport
equations with our data by plotting their dimensionless forms
in Figure 2. In the Meyer-Peter and Muller bed load
equation, k = 8 and p = 1.5. The Govers [1992] equation has
the form of (2) and is not consistent for nondimensionaliza-
tion in the form of equation (3), unless k is written as a
function of sediment size and sediment specific gravity as for
clear water as the transporting fluid (see Appendix D).
[30] When the (t*

0 � q*) curve for the Meyer-Peter and
Muller equation is compared to the data, one can see that
classical bed load equations with p = 1.5 would significantly
underpredict sediment transport on very steep slopes at high
shear stresses. Bed load equations for alluvial rivers such as
the Meyer-Peter and Muller equation were tested for slopes
in the range of 0.1% up to 2% and in the t* range of 0.1–1.
They often give good results in the slope range of 0.1–0.3%
[Yalin, 1977]. Therefore high flow shear stresses on steep
slopes are significantly above their test range. This
comparison allows us to visualize how a hillslope erosion
model using a generic bed load equation may underpredict
sediment transport in rills and gullies [Foster et al., 1989].

Figure 4. Comparison of the calculated sediment transport using the calibrated model parameters of k =
20 and p = 3 to the estimated sediment transport in the field. For the combined data for gullies Tr.05,
Tr.15, and Tr.18, R2 = 0.84 and NS = 0.83. For the Tr.19 data set alone, R2 = 0.5, NS = 0.44.
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In distributed models, such mispredictions may not be
detected since models are often calibrated optimizing
several parameters using basin outlet data. However, biased
spatially distributed erosion estimates may severely affect
spatial model results. The dimensionless form of the Govers
equation for shallow overland and rill flow for steep slopes
corresponds well with the field data.
[31] Figure 4 plots the total sediment transport volumes

calculated from equation (14) with the derived exponents
M = 2.1 and N = 2.25 (based on p = 3, mt = 0.6, nt =
0.8125, mw = 0.3, nw = �0.1825, and mn = 0.2) against the
estimated volumes in the field. The outliers in Figure 2 were
excluded from the plot. Regression coefficients (R2) and
Nash-Sutcliffe error measures (NS) [e.g., Gupta et al., 1998]

NS ¼ 1�
P

QsT � Vsð Þ2P
Vs � Vs

	 �2 ð22Þ

are calculated for each group of gullies where the model
inputs were selected constant. According to equation (14),
spatially constant model parameters imply that Qs = const.
A2.1S2.25. The combined data from Tr.05, Tr.15, and Tr.18
revealed both R2 and NS equal to 0.83, indicating that 83%
of the spatial variability of the sediment transport rates can
be represented by the model. For Tr.19 we obtained R2 = 0.5

and NS = 0.44. This means that only 44% of the variability
of the sediment transport rates over the terrain can be
represented by the model. In the field we observe more logs,
boulders, and exposed bedrock in Tr.19 than in the other
three gullies. We infer that the exposed rock and additional
variability in roughness limits entrainment and leads to a
significantly lower performance of the model using spatially
constant roughness values in Tr.19.
[32] To show the relationship between topography and

sediment transport, we plotted the estimated sediment trans-
port volumes in the field as a function of A2.1S2.25 (Figure 5)
along with equation (14) using the field estimates of the
model inputs.
[33] Topographic concavity expresses the long-term

effects of sediment transport and provides another check on
sediment transport functions. If the sediment transport func-
tion that we calibrated using field data is valid over the long
term, then the concavity index calculated using the calibrated
exponentsM and N (equation (5)) should be consistent with
the index that can be inferred from the data. Figure 6 plots
the local slope versus contributing area observed along
gully profiles at each measurement location. Lines are the
power law relationships between area and slope that
characterize the hillslope profile concavity (equation (5)).
They are plotted as the upper and lower bounds of the
data points which show an inverse relationship between

Figure 5. Estimated sediment transport as a function of contributing area and slope using their derived
exponents at surveyed gully segments. The lines plot equation (14). The solid line is for kn = 0.08, which
is for higher roughness conditions observed in Tr.19, and the dashed line is for kn = 0.045 for the rest of
the gullies.

ESG 6 - 10 ISTANBULLUOGLU ET AL.: A TRANSPORT MODEL FOR INCISION OF GULLIES



slope and area. The concavity index is calculated using
the area and slope exponents M = 2.1 and N = 2.25 of
the sediment transport relationship. This figure implies
that the form of the sediment transport equation derived
using field data from a single gully-forming event may
be consistent with the fluvial transport processes acting
over the long term. Note that data points where a positive
relationship between area and slope is observed pre-
sumably lie on the hillslopes where slope forming
diffusion sediment transport dominates incisive gully
erosion. Therefore they are not considered in the analysis.

6. Conclusions

[34] Sediment transport capacity is often parameterized as
a nonlinear function of shear stress or interchangeable
discharge or contributing area and slope in theoretical geo-
morphology. Although extensive data sets exist that deci-
pher the nonlinearity in relationships between sediment
transport and shear stress, discharge and slope (equations
(1) and (2)) in experimental flume scales, we know of no
study that examines the theoretical foundations of these
equations for naturally eroded gullies surveyed in the field.
In this paper we adapted a generic dimensionless sediment
transport function (3) to incision of gullies on steep slopes
by describing the hillslope hydrology and flow hydraulics
based on contributing area and local slope. We calibrated
the parameters of the dimensionless sediment transport
function, an empirical constant k, and a shear stress expo-

nent p for the case of recent gully erosion using field data
from a steep, burned mountainous basin in southwestern
Idaho, United States.
[35] Our field data suggested that under high shear stresses,

p = 3. This exponent is twice the shear stress exponents
used in classical bed load equations but consistent with total
load equations [Garde and Raju, 1985]. Engelund and
Hansen [1967] noted that starting from the incipient motion
of bed load the t* exponent increases from 1.5 to 2.5 and
even up to 3 under high shear stresses in equation (3) as the
flow intensity and the suspended load movement increases
[Chien and Wan, 1999]. Bed and total load equations were
mostly developed for alluvial rivers with gentle slopes and
bed forms, and under relatively lower t* ranges than we
calculated for our gullies. Thus their applicability on steep
hillslopes can be questionable. However, Govers’s flume
experiments on steep slopes with well-sorted mixtures also
reveal a shear stress exponent p = 2.5 and show good
correspondence with the field data (Figure 2). We suggest
that sediment transport capacity of incising gullies can be
modeled using equation (14) with either the model
calibration parameters obtained in this study or the
parameters derived from the Govers equation.
[36] The model driven by spatially constant inputs repre-

sents 83% of the spatial variability of the sediment transport
rates in gullies Tr.05, Tr.15, and Tr.18 located in three
different hollows. The reason for this good performance is
attributed to the rather spatially homogenous model inputs
such as the sediment sizes and the roughness conditions

Figure 6. Slope-area plot of the gully profiles observed in the field. Lines are the power law
relationships of the profile concavity between area and slope (equation (3)) plotted as the upper and lower
bounds of the data that show an inverse relationship between slope and area. M = 2.1 and = 2.25.
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observed in these gullies. For the case of Tr.19 the model
explains only 44% of the spatial variability of the sediment
transport rates. We infer that the reason for a significantly
lower model performance in Tr.19 is due to the heteroge-
neities in the roughness conditions and exposed rock that
are not spatially characterized in the model.
[37] The shear stress exponent p = 3 theoretically

corresponds to exponents M = 2.1 and N = 2.25 in the
sediment transport equation (1) that has been plotted in
Figure 5. This plot shows the importance of topography in
concentrated erosion. In the literature several M and N
exponents have been presented for different sediment
transport processes such as creep, soil wash, and rivers
[Kirkby, 1971; Arrowsmith et al., 1996]. For soil wash and
gullying, reported values of area and slope exponents are in
the range of M = 1–2 and N = 1.3–2. The exponents we
find are higher than the upper limit of these published
values. In the literature, however, contributing area is
represented as the specific catchment area (contributing area
per unit contour width) instead of contributing area
concentrated in a gully, and the exponents were empirically
developed based on longer observation periods.
[38] One of the implications of the sediment transport

function on landscape morphology is the concavity of the
channel network. The concavity index qc = (M � 1)/N
obtained from the area and slope exponents of the sediment
transport equation agree well with the observed profile
concavity of the gullies. This shows that the sediment
transport equation developed using a single erosion event is
consistent with the functional form of sediment transport
over the long term.

Appendix A: Derivation of the Shape Constant
C for Trapezoidal, Triangular, and Parabolic
Channels

[39] The shape constant in equation (10) is given here for
trapezoidal, triangular, and parabolic channels based on the
width to depth ratio z1 and sideslope ratio z2 (for triangular
and trapezoidal channels only). We recognize that for a
fixed channel z1 changes with discharge (and depth);
nevertheless it is treated here as a constant parameterization
of the form of an eroding channel where there is some
degree of adjustment of cross-sectional form to discharge.
Equation (10) gives

C ¼
A0:5
f

R
: ðA1Þ

Writing Af and R as a function of z1 and z2, we obtain Cs for
trapezoidal, triangular, and parabolic channel geometries
from (A1) respectively;

Ctrap ¼
z1 � z2ð Þ0:5

z1 � 2z2ð Þ þ 2 z22 þ 1
	 �0:5 ðA2Þ

Ctri ¼
z0:52

2 z22 þ 1
	 �0:5 ðA3Þ

Cprb ¼
ffiffiffiffiffiffiffi
1:5

p
z1:51

1:5z21 þ 4
: ðA4Þ

Appendix B: Derivation of the Effective Shear
Stress Proportional to Q and S

[40] It is commonly assumed in sediment transport
mechanics that both the Manning’s roughness coefficient
and hydraulic radius are the summation of those of grains
and bed forms [Simons and Senturk, 1977]. Here we
assumed that (1) bed form resistance is negligible during
gully incision and (2) nontransportable obstacles and gully
shape irregularities impose additional resistance to the flow
similar to bed forms. Manning’s equation for open channel
flow gives

V ¼ R2=3S1=2

n
; ðB1Þ

where n is the Manning’s roughness coefficient. The total
shear stress at the channel bed is

t ¼ rwgRS: ðB2Þ

Manning’s roughness is composed of a grain and additional
roughness components,

n ¼ ngc þ nac: ðB3Þ

Given an average flow velocity in the channel, the grain
component of hydraulic radius is obtained as [Laursen,
1958]

Rgc ¼ ngc
V

S0:5

� �1:5

ðB4Þ

from (B1) with only the grain roughness considered. This is
then assumed to give the effective shear stress acting on
grains in (B2) as

tf ¼ rwgRgcS: ðB5Þ

Substituting (B1) into (B4), Rgc is written as a function of R,

Rgc ¼ R
ngc

n


 �1:5
: ðB6Þ

Equation (B6) predicts grain hydraulic radius as a fraction
of the total hydraulic radius.
[41] Observations in rivers have revealed an inverse

relationship between Manning’s roughness coefficient and
discharge at a given station, because as flow depth increases
roughness elements become relatively less effective in
retarding the flow [Dingman, 1984]. Here we implemented
an empirical relationship for n based on discharge [Leopold
et al., 1964; Knighton, 1998],

n ¼ knQ
�mn ; ðB7Þ

where kn and mn are empirical parameters. Equation (B7)
when substituted into (B6) predicts an increase in (ngc/n)

1.5

with discharge, which suggests that as discharge increases
the fraction of the grain hydraulic radius would increase.
Now equation (12) is substituted into equation (10). The
result and equation (11) are substituted into equation (B6) to
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get Rgc. Rgc is substituted into equation (B5) to finally arrive
at

tf ¼ rwgk
�1:13
n C0:75

s n1:5gc Q
0:375þ1:13mnS0:8125: ðB8Þ

Appendix C: Derivation of the Flow Width in an
Eroding Channel Proportional to Q and S

[42] Given the assumption of a constant width to depth
ratio of the flow in an eroding channel, the flow cross-
sectional area can be described byWf, z1, and z2 for different
channel geometries. The flow cross-sectional areas of tra-
pezoidal, triangular, and parabolic channels are obtained as

Af ;trap ¼
W 2

f

z1
�
W 2

f z2

z21
ðC1Þ

Af ;tri ¼
W 2

f

4z2
ðC2Þ

Af ; prb ¼
2W 2

f

3z1
: ðC3Þ

Equating (12) to Af described by channel geometry above
and solving for Wf, we obtained the flow width as a
function of Q and S,

Wf ¼ ksk
0:375
n C�0:25Q0:375 1�mnð ÞS�0:1875; ðC4Þ

where ks is another dimensionless shape constant which is
z1/(z1 � z2)

0.5 for trapezoidal channels, 2z2
0.5 for triangular

channels, and (1.5z1)
0.5 for parabolic channels.

Appendix D: Nondimensional Form of the
Govers Equation

[43] An empirical sediment transport equation was pro-
posed by Govers [1992] using 434 data points collected
from a 6-m-long and 0.117-m-wide nonrecirculating flume.
In the experiments the slopes ranged from 1.7% to 21%, and
five well-sorted quartz materials with median grain sizes
ranging from 0.058 to 1.098 mm were used as sediment.
The equation Govers fitted is

log Tc ¼ 2:457 log
t� tc
d0:33


 �
� 4:348; ðD1Þ

where Tc is the sediment transport capacity in kg m�1 s�1.
Rearranging this equation, the following expression for the
unit sediment discharge qs (m

3 s�1 m�1) is obtained:

qs ¼
10�4:348

rsd0:811
t2:457 1� tc

t


 �2:457
: ðD2Þ

This equation is of form similar to equation (3), as can be
seen by substituting (4a), (4b), and (4c) into (3) with p = pb,
and solving for qs,

qs ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g s� 1ð Þd3

p
rwg s� 1ð Þd½ �p t

p 1� tc
t


 �p

: ðD3Þ

Equation (D3) is another expression of the generic sediment
transport equation that was expressed in dimensionless form
in equation (3). Since equations (D2) and (D3) are in the
same form, (D3) can be calibrated to (D2). The exponent p
is equated to 2.457, and k is obtained by equating the first
terms in (D2) and (D3) and solving for k,

kG ¼ 10�4:348r�1
s r2:457w g1:957 s� 1ð Þ1:957d0:146: ðD4Þ

The subscript G in kG indicates Govers coefficient k. This
equation can be simplified to kG = 34.70(s � 1)1.957d0.146

by substituting rs = 2650 kgm�3, rw = 1000 kgm�3, and g =
9.81 m s�2. The calibrated k and p allow one to write the
Govers equation in the form of (3),

q
s* ¼ kG 1�

t*c
t*

� �2:457

t2:457* ðD5Þ

[44] Figure 2 plots this equation to compare with the field
observations.
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