Introducing the Canopy Fuel Stratum Characteristics Calculator

Martin E. Alexander^{A,C} and Miguel G. Cruz^B

^A University of Alberta, Department of Renewable Resources and Alberta School of Forest Science and Management, Edmonton, AB, T6G 2H1, Canada.

^BCSIRO Ecosystem Sciences and CSIRO Climate Adaptation Flagship - Bushfire Dynamics and Applications, GPO Box 284, Canberra, ACT 2601, Australia.

^CCorresponding author. Email: mea2@telus.net

Abstract. The regression equations developed by M.G. Cruz, M.E. Alexander and R.H. Wakimoto (2003. *International Journal of Wildland Fire* **12**, 39-50.) for estimating the canopy base height, bulk density and fuel load in ponderosa pine, lodgepole pine, Douglas-fir and mixed conifer fuel types based on three stand characteristics (average height, basal area and stand density) have now been programmed into an excel spreadsheet.

Additional keywords: canopy base height, canopy bulk density, canopy fuel load, crown fire, basal area, stand density, stand height.

Introduction

Canopy fuel stratum characteristics determine to a large extent the behavior of crown fires. By linking an extensive forest stand database with foliage dry weight allometric equations. Cruz *et al.* (2003) were able to develop regression equations for estimating canopy base height (CBH), canopy fuel load (CFL), and canopy bulk density (CBD) that are compatible with Van Wagner's (1977) models of crown fire initiation and propagation. Three inputs are required: average stand height, basal area and stand density. Equations are available for four broad coniferous forest fuel types commonly found in western North America (i.e. ponderosa pine, lodgepole pine, Douglas-fir, and mixed conifer). The purpose of this paper is to describe a software application of the Cruz *et al.* (2003) equations, called the *Canopy Fuel Stratum Characteristics Calculator* (Fig. 1).

Overview of software

The main features of the Canopy Fuel Stratum Characteristics Calculator are:

- Given three user inputs (i.e. stand area basal area, average stand height and stand density), CBH, CFL and CBD are automatically calculated for one of the four fuel types.
- Provides for both SI or metric and English unit inputs/outputs (Figs. 2 and 3).
- Cautionary 'pop-up' messages (Fig. 4) for input values that exceed a maximum reliable value or variable range (Table 1).

A copy of the *Canopy Fuel Stratum Characteristics Calculator* software is readily available for downloading from the FRAMES website (<u>http://frames.nbii.gov/cfis</u>).

Microsoft Excel - Cruz et al. (2003) Canopy Fuel Stratum Characteristics Calculator (October 2010)
🕙 Elle Edit View Insert Format Iools Data Window Help 🛛 🗸 - 🕫 🗙
[〕 📴 🖬 🗿 🕼 [以 🖉 凯] 🕉 🕰 • ダ (9 - 10 - 10) 🐁 Σ • 회 科 🏨 🦓 100% - 🖉 📓 [Verdana - 💌 10 - 10 - 10 - 10 - 15 - 25 - 25 - 25 - 15 - 15 - 15 - 15
1 💼 🏙 🏙 🤷 🖄 1 🗟 🖄 📦 🖬 📦 I 🖤 Reply with Changes End Review 🥊
B45 • A
Cruz, Alexander and Wakimoto (2003)
Canopy Fuel Stratum Characteristics Calculator Version 1.0 - October 2010
Canopy fuel stratum characteristics determine to a large extent the behavior of crown fires. By linking an extensive forest stand database with foliage dry weight allometric equations, we developed regression equations to estimate the following canopy base height (CBH) - Canopy helload (CPL) - Canopy bulk density (CBD)
Equations are available for the following fuel types that commonly occur in western North America: - Ponderosa Pine - Lodgepole Pine - Douglas-fir - Mixed Conifer
The Cruz et al. (2003) regressions for estimating the CBH, CFL and CBD of these four fuel types are included within the present software. The outputs will serve as inputs in predicting crown fire behavior potential using, for example, the Crown Fire Initiation and Spread (CFIS) software[2].
Canopy Fuel Stratum and Stand Characteristics
Stand Angist Ludder or bridge luss Canopy bulk density = Canopy
Ladder or bridge fuels: bark flakes, lichens, needle drape, boles branches (live & dead), understory conflers, tall shrubs
[1] Cruz, M.G.: Alexander, M.E.: Wakimoto, R.H. (2003) Assessing canopy fuel stratum characteristics in crown fire prone_ fuel types of western North America. International Journal of Wildland Fire 12: 39-50.
[2] Crown Fire Initiation and Spread (CFIS) Software System is available for downloading at the FRAMES website
H ↔ H\Introduction / Calculators / Acnowledgments /
Ready

Fig. 1. Screen of the Canopy Fuel Stratum Characteristics Calculator tab.

Microsoft Excel - Cruz et al. (2003) Canopy Fuel Stratum Characteristics Calculator (October 2010)	- 8 ×
	- 8 ×
[1] 😰 🖟 🗿 🗿 🙆 🖉 🎝 🖉 🖏 • 🖉 • ♥ • • • ● 🐁 Σ • 处 科 🏙 🤯 100% 🔹 🛛 📲 [Verdana 👘 10 🔮 10 💆 10 🔤 10 🔮 10 🔮 10 🔤 10 0	
🗄 🐚 🖄 🖀 📿 🗞 🕼 🕼 🖄 🕼 🗮 🚇 🗎 🖤 Reply with Changes Epd Review	
C7 • A SI	W
	VV
2 Cruz, Alexander and Wakimoto (2003)	
3 Canopy Fuel Stratum Characteristics Calculator 4 Version 1.0 - October 2010	
5 6 Inputs:	
7 Step 1: Select Unit System SI 🗸	
8 9 Step 2: Select Fuel Type Ponderosa pine 10	
11 Step 3: Input Stand Basal Area (m2/ha) 25 12	
13 Step 4: Input Average Stand Height (m) 14	
15 Step 5: Input Stand Density (trees/ha) 1000 16 17 17	
18 Outputs: 19	
20 Canopy Base Height (m) 21	
22 Canopy Fuel Load (kg/m2) 0.95	
24 Canopy Bulk Density (kg/m3) 0.29 25 26	
20 28 29	
<u>30</u> 31	
32 33 34	
35 36	
37 38	
39	
<u>40</u> 41	
42	
43	
45	
46 47	
48	
49 K () Introduction Calculations / Acnowledgments /	
Ready	

Fig. 2. Screen of the Canopy Fuel Stratum Characteristics Calculator SI unit calculation tab.

Microsoft Excel - Cruz et al. (2003) Canopy Fuel Stratum Characteristics Calculator (October 2010)	_ 6 ×
🕙 Eile Edit View Insert Format Iools Data Window Help	Type a question for help 🔷 🗕 🗗 🛪
: 🗋 😂 🛃 🚔 🕼 🖏 🖏 🖏 🐁 🛍 🛍 - 🖋 🔊 - 🔍 - 🥘 Σ - 2↓ 🛣 🤐 🛷 100% 💿 🕢 Verdana 💿 10 💽	B I U 🗉 🗃 🗃 \$ % , % 🖧 🛱 🛱 🖾 • 💁 • 🛓 • 🍃
: 🛄 🖆 🖾 🥸 🍇 🗊 🏷 📓 🎭 🍽 Reply with Changes End Review 🥊	
C7 ▼ £ English A B C D E F G	H I J K V W
	H I J K V W
2 Cruz, Alexander and Wakimoto (2003)	
3 Canopy Fuel Stratum Characteristics Calculator Version 1.0 - October 2010	
5	
6 Inputs: 7 Step 1: Select Unit System English ▼	
Step 2: Select Fuel Type Ponderosa pine	
10	
11 Step 3: Input Stand Basal Area (ft2/ac) 109 12	
13 Step 4: Input Average Stand Height (ft) 49 14	
15 Step 5: Input Stand Density (trees/ac) 405	
17 18 Outputs: 19	
20 Canopy Base Height (ft) 2.2	
22 Canopy Fuel Load (tons/ha) 0.19	
24 Canopy Bulk Density (lb/ft3) 0.02 25	
26	
28 29	
<u>30</u> 31	
32	
33 34	
35	
36 37	
38 39	
40	
41 42	
43	
44 45	
46 47	
48	
κ ↔ κ Ν Introduction Calculations / Acnowledgments / Ready	

Fig. 3. Screen of the *Canopy Fuel Stratum Characteristics Calculator* English unit calculation tab.

⊠M	licrosoft E	xcel - Cruz et a	al. (2003) Canopy F	uel Stratum (Charac	teristics	s Calculato	or (Octo	ober 20	010)										_ 8	×
			at <u>T</u> ools <u>D</u> ata <u>W</u> indo																istion for he		×
1			🗈 🛍 • 🛷 🕒 • (° •			100%	🕶 🕜 🥃 🖓 Ve	rdana		v 10	• B	ΙŪ	= =	= =	\$ %	° *.0	.00 ₹	第一日	• 🖄 • 🗛		
	1월 1월 🖾 🤻 07 🔷 🔻		🖥 🕼 💖 Reply with Ch.	anges E <u>n</u> d Reviev	W Ţ																
	C7 -	fx SI	В	С		D	E		F	G		Н		I		J	К		V	W	_
1							(0000)														_
2				Alexander an Jel Stratum C				or													
4			Ve Ve	rsion 1.0 - Octob	per 2010)	5 Galealar	.01													
5		Inputs:																			
7		Step 1: Select U	Jnit System	SI	-																
8		Step 2: Select F	uel Type	Lodgepole p	oine																
10				_																	
11 12		Step 3: Input St	and Basal Area (m2/ha	e) <u>40</u>																	
13 14		Step 4: Input Av	verage Stand Height (r	m) 25		Caution!	The maximur						develo	o the							
14		Step 5: Input St	and Density (trees/ha) 2000			regress	sion equa	ation wa	is approx	imately	20 m									
16 17																					
18		Outputs:																			
19 20		Canopy Base Hei	in the form	15.6																	
21																					
22 23		Canopy Fuel Loa	id (kg/m2)	1.32																	
24		Canopy Bulk Den	nsity (kg/m3)	0.31																	
25 26																					
28 29																					
30																					
31 32																					
33 34																					
35																					
36 37																					
38																					
39 40																					
41 42																					
43																					
44 45																					
46																					
47 48																					
49		dustion Colord-**	an () annu in damage - 1		_				_					_	_	_					
Ready		uction Calculation	ns / Acnowledgments /																		
-,																				1 <u>2</u> H	-

Fig. 4. Screen of the Canopy Fuel Stratum Characteristic Calculator cautionary note example.

the Canopy Fuel Stratum Characteristics Calculator											
	Basa	l area	Stand	height	Stand density						
Conifer fuel type	$m^2 ha^{-1}$	ft ² acre ⁻¹	m	ft	trees ha ⁻¹	trees acre ⁻¹					
Ponderosa pine	40	175	1-20	3-65	3000	1200					
Lodgepole pine	50	220	3-20	10-65	4000	1600					
Douglas-fir	55	240	2-25	7-80	3000	1200					
Mixed conifer	70	300	3-25	10-80	4000	1600					

 Table 1. Maximum reliable values and/or reliable range of the three stand inputs used in the Canopy Fuel Stratum Characteristics Calculator

Feedback received todate

The *Canopy Fuel Stratum Characteristics Calculator* was informally tested by a group of undergraduate students at the University of Idaho, Moscow, in April 2010 as part of a fire management course exercise. According to their instructor, Chad Hoffman, 'The class really liked the calculator. They thought it was easy to use and very straight forward ... Several of the students decided to recommend this approach in the fuels inventory plan they are developing'.

Recent developments of note

The Cruz *et al.* (2003) regressions for estimating canopy fuel metrics were recently evaluated for their performance. The results as reported on by Cruz and Alexander (2011) were very encouraging. The evaluation consisted of comparing observed and predicted values for two different data sets. The first test involved a simulation of two low thinning regimes (i.e. 25 and 50% basal area reduction) based on a random selection of stand data used in the original Cruz *et al.* (2003) study, and was undertaken in direct response to a perceived shortcoming of the CBH regressions models (Cruz *et al.* 2010). The second test involved a direct comparison against independently collected data for ponderosa pine in the Black Hills of South Dakota by Keyser and Smith (2010).

Acknowledgement

This paper is a contribution of Joint Fire Science Program Project JFSP 09-S-03-1.

References

- Cruz MG, Alexander ME (2011) Evaluating regression model estimates of canopy fuel stratum characteristics in four crown fire prone fuel types in western North America. *International Journal of Wildland Fire* **20**, in press.
- Cruz MG, Alexander ME, Wakimoto RH (2003) Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. *International Journal of Wildland Fire* **12**, 39-50.
- Cruz MG, Alexander ME, Wakimoto RH (2010) Comment on "Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements". *Canadian Journal of Forest Research* **40**, 2262-2263.
- Keyser TL, Smith FW (2010) Influence of crown biomass estimators and distribution on canopy fuel characteristics in ponderosa pine stands of the Black Hills. *Forest Science* **56**, 156-165.
- Van Wagner CE (1977) Conditions for the start and spread of crown fire. *Canadian Journal of Forest Research* **7**, 23-34.