What is the Drought Code?

Quiz

This?

Or this?

Drying Processes

Diffusion

- Movement of moisture through a medium
- Process operates within the fuel
- Supplies moisture to the surface
- "Falling rate" period
- ► Timelag due to rate of diffusion
- More limiting under dry conditions

Evaporation

- Vaporization of water at the surface
- Process operates at the surface
- Carries moisture away from the surface
- "Constant rate" period
- No timelag
- Limiting under wet conditions

Background: The Journey

- ► Modelling moisture dynamics in feathermoss I came across the Finnish Forest Fire Index (FFI).
- ▶ FFI is an evaporative model.
- Most FDR models are diffusive (FFMC, DMC), AKA the "logarithmic drying equation"

Background: The Journey

- ▶ Got the FFI code from the Finns and began comparing it to the Canadian Moisture Codes.
- Stopped short by the Drought Code.
- Could not understand what it is.
 - Conceptual hybrid (both diffusive & evaporative, sort of)
 - Mathematics abstruse
 - Attributes unclear (assigning soil to soil-less model)
- ► Looked to the literature. Became clear that few people in the last several decades really understand what the DC is.
- Perpetuation of misunderstandings

Code Smackdown

"Normal Code or Index"

- Diffusive
- Assumes soil or fuel present
- ▶ Unit: Moisture Content (%)
- Driver: Gradient in free moisture

Drought Code

- Evaporative (Sort of)
- No soil required
- Unit: Soil water reservoir depth (mm)
- Driver: Scaled evaporative loss

Misunderstandings of the DC

- ▶ What is the soil water reservoir depth? 8"? 203.2 mm? 100 mm?
 - Problem arises in assigning soil to a soil-less model
- Input of Potential Evaporation
 - Actual Evaporation
- Misnomers and ambiguities
- Conversion between MC (%) and Reservoir depth (mm)
- Abstruse mathematics
- Mixture of English and metric units

New Objective: Reconstruction

- Deconstruct the DC
- Expose all the inputs
- Metric-ize
- Define its attributes
- Put it back together in a way that is understandable
- Separates hydrological model from the abstraction equation
- Wrote a paper with hydrological approach because the DC is a hydrological model

Asynchrony in Evaporation

Unequal treatment of rainfall

- ▶ Rain is reduced by 17% due to canopy interception.
- Evaporation is not
- Summer shots of rain often do not exceed the threshold of 2.8 mm
- Drying bias exacerbates "DC departure"

Reservoir Depth 203.2 mm

- Alaska black spruce
 - ▶ 51 mm in duff
 - ▶ 152 mm in mineral soil
- ▶ Need to go 1.6 m or 5-1/4 feet deep to find 8" of water
- Wrote draft paper

New Problem: Perspective

- Review from members of the mid-1980s Canadian Fire Danger Group Members (M. Alexander & B. Lawson) suggested new perspective
- How do you compare a kiddie pool with duff?
- An evaporative model with a diffusion model?
- Timelag!
- ► (Tear up your draft)

So, what are the timelags?

What are the timelags?

Alaska Duff*

- Live moss: (6 hours) 0.25 days
- ► Upper duff: 16-30 days
- ► Lower duff: 47 days
- ► Mineral soil: 217 days

Alaska Drought Code

► 60 days

^{*}Very preliminary numbers from dataloggers and field sampling

Asynchrony in Timelag

Month	2015 DC Timel	oratea oratea
April		
May	irically col	UMP 72
Jun	sirion J	61
JELLIL	British 46	46
ALFYO	64	61
Sept	127	99

Ambiguities

- "Day length adjustment". Despite appearing in authoritative documents, day length plays no mathematical part in the DC.
- Reservoir depth = 8" or 203.2 mm not 100 mm.
- "Moisture equivalent" suggests moisture content. They are not the same. Substitute "Reservoir depth".

What is the DC? "Soap Box"

- The DC itself does not make much sense. Diffusion model masquerading as an evaporative model?
- lt is just a weather thing with a timelag.
- Biased toward evaporation.
- Peak in evaporation is 30 days later than pan evaporation
- Timelag of 60 days is 2/3 of Alaska's fire season. (Overwintering has a big effect on rest of the season)

Parting Thoughts

- ▶ Think in terms of the kiddie pool.
- ▶ DC little affects BUI in the early part of the season.
- Not much sense in using the fall DC as a basis for determining the spring DC
- ► Consider substituting Penman Equation for E_{pot}.

