

Fuel, Fuel Moisture, and Fire Potential

NFDRS Changes In 2016, Section and Subsection for Alaska and Lake States Users

Forest Fires

Duck Lake (MI) Fire, May 24/25, 2012 21,135 Acres Burned Bruno Fire (AK), June 29, 2015 15,131 Acres Burned over 2 weeks

Fire Danger & Fire Behavior In the Great Lakes and Alaska for 20 Years <u>glffc.utah.edu</u> and <u>akff.mesowest.org</u>

- Michigan's calibration effort in the late 1990s examined fire occurrence numbers
- <u>Spring (pre-green) fires</u>
 numbers were
 related to
 FFMC and ISI
- Summer fires were predisposed by BUI

MIDNR Forest, Mineral and Fire Management

ADJECTIVE CLASS MATRIX

May 19, 2004

SPRINGTIME ADJECTIVE RATINGS

Begin with Table 1. Using **Fine Fuel Moisture Code** (FFMC) and **Initial Spread Index** (ISI) calculated for today to find the appropriate adjective class. If instructed to use Table 2, determine the adjective rating using the **Fire Weather Index** (FWI) and **Fine Fuel Moisture Code** (FFMC).

TABLE 1	ISI = 0.0 to 1.9	ISI = 2.0 to 3.9	ISI = 4.0 to 7.9	ISI = 8.0+
FFMC = 0.0 to 74.9	LOW	MODERATE	HIGH	
FFMC = 75.0 to 84.9	MODERATE	MODERATE	HIGH	SEE TABLE 2
FFMC = 85.0+		HIGH	HIGH	SEE TABLE 2

TABLE 2	FFMC < 92	FFMC = 92+
FWI Less Than 30.0	VERY HIGH	VERY HIGH
FWI = 30.0+	VERY HIGH	EXTREME

SUMMERTIME ADJECTIVE RATINGS

Generally, begin using the summer criteria on June 1. Begin with Table 3. Using **Buildup** Index (BUI) and Initial Spread Index (ISI), find the appropriate adjective class. If instructed to use Table 4, determine adjective class using the **Fire Weather Index** (FWI) and **Fine Fuel Moisture Code** (FFMC).

	ISI	ISI	ISI	151	ISI	ISI	ISI
TABLE 3	0.0 to 1.9	2 to 2.9	3 to 3.9	4.0 to 5.9	6.0 to 7.9	8.0 to 9.9	10.0+
BUI=0.0 to 44.9	LOW		MODERATE		HIGH		
BUI=45.0 69.9	LO۱	W MODERATE		HIGH V		VERY HIGH	
BUI=70.0 to 99.9	LOW	MODERATE HI		IGH	SEE TAB	LE 4	
BUI=100.0+	USE SPRING CRITERIA						

TABLE 4	FFMC < 92	FFMC = 92+
FWI Less Than 35.0	VERY HIGH	VERY HIGH
FWI = 35.0+	VERY HIGH	EXTREME

Minnesota "Pocket Card" puts interpretations in firefighter hands

FFMC-Fine Fuel Moisture Code

0-80	Low
81-87	Moderate
88-90	High
91-92	Very High
93+	Extreme

75 Some surface fire spread.
80 Continuous fire spread.
90 Spot fires likely, easy ignition.
92 Extreme fire behavior

DMC-Duff Moisture Code

0-12	Low	
13-27	Moderate	
28-41	High	
42-62	Very High	
63+	Extreme	

DC-Drought Code

0-79	Low
80-209	Moderate
210-274	High
275-359	VeryHigh
360+	Extreme

25 Duff burns, lightning starts become likely.
40 Moderate fire intensity.
50 Extreme fire behavior.
150 Most available fuel moisture is gone.

<u>15 Deep</u> organic layers are saturated.
250 Extended mop-up, peat will burn.
300 Deep burning, more persistent fires.

ISI-Initial Spread Index

0-4	Low
5-8	Moderate
9-11	High
12-18	Very High
19+	Extreme

<7 Primarily surface fire. 10 High rates of spread likely. 12 Torching more frequent. 20 Extreme fire behavior.

BUI-Build	BUI-Build Up Index			
0-19	Low			
20-34	Moderate			
35-54	High			
55-76	VeryHigh			
77+	Extreme			

30 Heavier fuels involved in combustion.
60 Extended mop-up.
80 Extreme fire behavior in medium and heavier fuels, even with low ISI.
100 Lowland spruce can crown.

FWI-Fire Weather Index

0-5	Low
6-14	Moderate
15-21	High
22-32	VeryHigh
33+	Extreme

Creeping surface fire Low to moderate spread Torching, spotting, intermittent crowning. Active crowning possible Major fire development possible

BUI & FFMC: MODIS Fire Detection Likelihood in AK

Both *cumulative* <u>drying</u> of fuel beds (as represented by **Buildup Index or** BUI) and *current* weather (as represented by **Fine Fuel Moisture Code** or FFMC), contribute to the onset and size of Growth Events in this Boreal Landscape

Daily Average DMC and BUI, 1994-2013 AK02 (Yukon Flats & Surrounding Uplands)

SPRUCE	BUIL < 40.0	BUI	BUI	BUI	BUI 110 0+
(Summer)	001 < 40.0	40.0 to 59.9	60.0 to 89.9	90.0 to 109.9	501110.04
FFMC Less than 80.0				1014	LOW
FFMC 80.0 to 81.9 FFMC	LOW	LOW	LOW	LOW	MODERATE
82.0 to 83.9 FFMC 84.0 to 85.9	-	MODERATE	MODERATE	MODERATE	нісн
FFMC 86.0 to 88.9	MODERATE		шси	HIGH	
FFMC 89.0 to 89.9 FFMC			поп	VERY HIGH	VERY HIGH
90.0 to 91.9 FFMC 92.0 to 92.9	нідн	HIGH	VERY HIGH		
FFMC 93.0+ and Temp < 75.0				VERY HIGH if	VERY HIGH if
FFMC 93.0+ and Temp 75.0 to 79.9		VERY HIGH if FWI is less than	FWI is less than 36.0	36.0	28.0
FFMC 93.0+ And Temp 80.0+	VERY HIGH if FWI <40 EXTREME if FWI is at least 40.0	40.0 EXTREME if FWI is at least 40.0	EXTREME if FWI is at least 36.0	FWI is at least 36.0	FWI is at least 28.0

AK Summer (or Spruce) Adjectives

Modis Detect Days by Danger Level at Nearest RAWS (AK01E-Tanana Valley East)

Modis Detects by Danger Level at Nearest RAWS (AK01E-Tanana Valley East)

3.000

Wisconsin Calibration Identifies 8 level readiness and response - Poly. (Conditional) System

Poly. (FWI)

2.500 2.000 1.500 1.000 0.500 0.000 2 3 4 5 6 7 8 1

Fires/Day

Fires/Day				
Staffing Level	Conditional	FWI		
1	0.077	0.238		
2	0.472	0.656		
3	0.788	0.844		
4	0.926	0.901		
5	1.516	1.481		
6	2.059	2.235		
7	2.457	1.667		
8	1.667	1.000		

	2.5.5	C-2	, Bore	al Spri	uce	Inte	nsity		Flame	FLI	FLI
	Op	en, Rat	e of Spi	read in	ch/hr		1	up to	Length 1	10 KYY/M	3
	M	ultiply b	y 1.1 to	get fee	et/min		2	up to	4	500	145
	Div	/ide_by	80 to g	et miles,	/hour		3	up to	12	2000	5/8
	Di	vide by	3 to get	t meters	s/min		5	up to	18	10000	2891
	<u>Torching</u> , Active Crown Fire										
	- 1				Bu	ildup In	dex (Bl	(וע			
	ISI	10	30	50	70	90	110	130	150	170	190
Ι	1	0.3	1	1	2	2	2	2	2	2	2
	2	0.9	3	4	4	5	5	5	5	5	5
	3	2	6	7	8	8	9	9	9	9	9
I	4	3	8	11	12	12	13	13	13	14	14
	5	4	<u>11</u>	15	16	17	18	18	18	19	<u>19</u>
I	6	5	15	<u>19</u>	<u>21</u>	<u>22</u>	<u>23</u>	<u>23</u>	<u>24</u>	<u>24</u>	<u>24</u>
	7	6	<u>18</u>	23	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>29</u>	<u>30</u>	<u>30</u>
	8	7	22	<u>28</u>	31	32	34	34	35	35	36
T	9	8	25	<u>32</u>	36	38	39	40	41	41	42
ľ	10	9	<u>29</u>	37	41	43	45	46	47	48	48
1	11	10	33	42	46	49	51	52	53	54	54
	12	11	37	47	52	55	57	58	59	60	61
Ι	13	12	41	52	57	61	63	64	66	66	67
	14	14	45	57	63	66	69	70	72	73	74
I	15	15	49	62	68	72	75	77	78	79	80
Ļ	16	16	52	66	74	78	81	83	84	85	86
	1/	1/	56	/1	/9	84	8/	89	91	92	93
ļ	18	18	60	/0	84	89	93	95	9/	98	99
Ľ	20	20	68	86	90	101	104	101	105	104	112
1	21	22	72	01	100	106	110	113	115	117	118
	22	23	75	95	106	112	116	119	121	123	124
I	23	24	79	100	111	117	122	125	127	129	130
	24	25	83	105	116	123	127	130	133	135	136
Ι	25	26	86	109	121	128	133	136	139	141	142
	26	<u>27</u>	90	114	126	133	138	142	144	146	148
	27	<u>28</u>	93	118	131	138	143	147	150	152	154
Ļ	28	<u>29</u>	97	122	136	144	149	153	155	158	159
Ľ	29	<u>30</u>	100	127	140	149	154	158	161	163	165
Ţ	30	31	103	131	145	153	159	163	166	168	170
Ľ	31	32	106	135	150	158	164	168	1/1	1/4	1/6
T	32	33	110	139	154	103	109	1/3	1/6	1/9	181
	34	34	115	143	162	108	174	1/8	181	184	180
I	34	35	110	151	167	177	183	189	100	104	191
	36	37	122	155	171	181	188	193	196	199	201
I	37	38	125	158	175	185	192	197	201	204	206
	38	39	128	162	179	190	197	202	205	208	210
I	39	40	130	165	183	194	201	206	210	213	215
	40	<u>41</u>	133	169	187	198	205	210	214	217	220

Integration of FWI Indices in Fire Behavior Prediction (FBP) Tools

MesoWest Alaska Fire & Fuels

BUI and **ISI** are direct inputs to FBP Tables

CONTROLS

Variable Controls

Time Controls ₩ ₩

Submit Date Layer Controls Hide Grids 👖 Hide Stns

Hide Text No Zones Lightning Active Fire

MODIS Fire

11

ISI

20150706

ANL Valid 20150706 STN Valid 20150706

> 4 to 5 3 to 4

2 to 3 1.5 to 2

1 to 1.5

0 to 1

Inputs from daily FWI reports serve prediction

00:55:16 AKST LEGEND

BUI

AK Fire Behavior Prediction (FBP) Field Guide

Wildland Fire Decision Support System (WFDSS)

Main Menu

Home News Support Processing Disclaimer References Quick Links Search Archive

Fire Potential / Danger

Fire Danger Rating Haines Index Dry Lightning Potential Lightning Ignition Lightning Efficiency NDFD Fire Danger Forecasts

Weather

Fire Weather Map Data Google Earth Map Data

Moisture / Drought

Dead Fuel Moisture Growing Season Index AVHRR NDVI Keetch-Byram Index Palmer Index National Fuel Moisture Database

Experimental Products

North Dakota Fire Danger Rating NFDRS Next Day Forecast Western Region Climate Center RAWS

External Products

State and Regional Fire Danger Rating Systems International Fire Danger Rating Systems Large Fire Potential and Fire Potential Indexes

Ongoing Research

Mississippi Fire Potential

Static Maps

Wildland Fire Assessment System (WFAS)

Derived by WFAS using the National Digital Forecast Database and RAWS surface weather observations

NDFD Fire Danger Point Forecast Tool

NDFD ERC Percentile Forecasts

NFDRS 2016

- Important revisions to our national system
- Expected online this year
- 78/88 NFDRS systems to be discontinued

Main Menu

Home News Support Processing Disclaimer References Quick Links Search Archive

Fire Potential / Danger

Fire Danger Rating Haines Index Dry Lightning Potential Lightning Ignition Lightning Efficiency NDFD Fire Danger Forecasts

Weather

Fire Weather Map Data Google Earth Map Data

Moisture / Drought

Dead Fuel Moisture Growing Season Index AVHRR NDVI Keetch-Byram Index Palmer Index National Fuel Moisture Database

Experimental Products

North Dakota Fire Danger Rating NFDRS Next Day Forecast Western Region Climate Center RAWS

External Products

State and Regional Fire Danger Rating Systems International Fire Danger Rating Systems Large Fire Potential and Fire Potential Indexes

Ongoing Research

Mississippi Fire Potential

Static Maps

Wildland Fire Assessment System (WFAS)

Derived by WFAS using the National Digital Forecast Database and RAWS surface weather observations

NDFD Fire Danger Point Forecast Tool

NDFD ERC Percentile Forecasts

NFDRS

The new system is of interest.

- We already use NFDRS fuel moistures in every <u>WFDSS</u> <u>analysis</u>
- When we travel
 to other states,
 we hear <u>NFDRS</u>
 <u>indices</u> in daily
 reports and
 interpret <u>pocket</u>
 <u>cards</u> that use
 ERC and BI

NFDRS 2016 Revision Significant Changes

- <u>Dead Fuel Moisture Model Change</u>: Fosberg Model replaced by Nelson Model for at least the 1hr and 10hr fuel moistures. *Already in WFDSS STFB & NTFB*
- <u>Live Fuel Moisture Model Changes</u>: Herbaceous and Woody Fuel Moistures now based on Growing Season Index (GSI), which is calculated directly from Daylength, Minimum Daily Temperature, and Vapor Pressure Deficit. *Already in all WFDSS analyses*
- Fire Danger Fuel Model Changes: Reduction in the number of fuel models from 40 to 5.
- <u>Elimination of Manual Inputs</u> to reduce errors and facilitate automated calculation of outputs on gridded basis

SURFACE FUELS - FFMC

ORGANIC LAYER - DMC

DEEP DUFF - DC

Live Live Herbaceous

1hr &

1,000hr

10hr

Foliar

100hr

Fire Weather Index (FWI) System	Fuel Moisture	National Fire Danger Rating System (NFDRS)
Fine Fuel Moisture Code (FFMC), offers both daily and hourly versions Grass Fuel Moisture [Code] (GFM or GFMC), is not in daily FWI. It adds solar radiation to hourly calcs	Dead Fine Fuel Moisture Categories	1-hr Fuel Moisture (%) and 10-hr Fuel Moisture (%); new calculations require hourly input including solar radiation.

Fire Weather Index (FWI) System	Fuel Moisture	National Fire Danger Rating System (NFDRS)
Fine Fuel Moisture Code (FFMC), offers both daily and hourly versions Grass Fuel Moisture [Code] (GFM or GFMC), is not in daily FWI. It adds solar radiation to hourly calcs	Dead Fine Fuel Moisture Categories	1-hr Fuel Moisture (%) and 10-hr Fuel Moisture (%); new calculations require hourly input including solar radiation.
Duff Moisture Code (DMC), has a timelag of 15 days, analogous to a 300 hr timelag fuel moisture	Intermediate Fuel Moisture Categories	100-hr Fuel Moisture (%), may employ the Nelson Model. Herbaceous Fuel Moisture (%), uses GSI (or LFI) to signal greenup and moisture content.

Fire Weather Index (FWI) System	Fuel Moisture	National Fire Danger Rating System (NFDRS)
Fine Fuel Moisture Code (FFMC), offers both daily and hourly versions Grass Fuel Moisture [Code] (GFM or GFMC), is not in daily FWI. It adds solar radiation to hourly calcs	Dead Fine Fuel Moisture Categories	1-hr Fuel Moisture (%) and 10-hr Fuel Moisture (%); new calculations require hourly input including solar radiation.
Duff Moisture Code (DMC), has a timelag of 15 days, analogous to a 300 hr timelag fuel moisture	Intermediate Fuel Moisture Categories	100-hr Fuel Moisture (%), may employ the Nelson Model. Herbaceous Fuel Moisture (%), uses GSI (or LFI) to signal greenup and moisture content.
Drought Code (DC) has a timelag of 52 days, analogous to a 1200 hr timelag fuel moisture	Slowly Changing Fuel Moisture Categories	1000-hr Fuel Moisture (%), may use Nelson too. Woody Fuel Moisture (%), will use GSI/LFI too Keetch-Byram Drought Index (KBDI), used to add fuel loads.

WFDSS Analysis Fuel Moisture Inputs

- All models use the old Fosberg model to initialize dead fuel moistures
- STFB and NTFB use the new NFDRS Nelson Model for conditioning fine fuels
- All the models use the new NFDRS GSI based live fuel moistures

Generate ERC Classes

b	Model	1 Hour FM	10 Hour FM	1 100 Hour FM	Herb FM	Woody FM
	default	5	7	16	169	18(
	Delete					
	Wildlan Decisio	nd Fire on Support Syster	n 🕑 <u>Hel</u>	P Wildland Decision	Fire Support System	⊛ <u>Help</u>
	ncident Analys Pagami 09-11 R Creek conditio Wind Spee	is Review 8h S/R v2 1 oning day d Direction R	Analysis Ti Date 16 09/11/2011 AWS Station	me Incident Analysis :00Pagami 09-11 Rev Creek conditionin Wind Speed	riew 8h S/R v2 1 ng day Direction RAV	Analysis Time Date 16:00 09/11/2011 VS Station
	8 mpn	328° azimuth 2	10509 - ELY MN	8 mpn	328° azimuth 210	509 - ELY MN
c I	1 Hr	Fuel Moisture	Legend	10 Hr E	uel Moisture I	egend
S	1 Hr Resolut	Fuel Moisture	Legend	10 Hr F Resolution	uel Moisture L 60 meters Unit	_egend
s e	1 Hr Resolut	Fuel Moisture ion: 60 meters U Value	Legend Inits: percent Freq	10 Hr F Resolution	uel Moisture L a: 60 meters Unit Value I	egend s:percent Freg
s e	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable	e Legend Inits: percent Freq 49,923	10 Hr F Resolution	uel Moisture L 60 meters Unit Value I Non-burnable 4	Legend s: percent Freq 19,923
s e 1	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable 6.00 - 7.00 7.00 - 8.00	e Legend Inits: percent Freq 49,923 50 19,791	10 Hr F Resolution	uel Moisture L 60 meters Unit Value I Non-burnable 4 11.00 - 12.00 1 12.00 - 13.00 2	egend s: percent Freq 19,923 10,310 26,676
s e 1	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00	E Legend Inits: percent Freq 49,923 50 19,791 165,792 292 595	10 Hr F Resolution	uel Moisture L : 60 meters Unit Value I Non-burnable 4 11.00 - 12.00 1 12.00 - 13.00 2 13.00 - 14.00 31	egend s: percent 9,923 0,310 26,676 12,387
s e 1	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00 9.00 - 10.00 10.00 - 11.00	E Legend Inits: percent 49,923 50 19,791 165,792 282,585 277	10 Hr F Resolution	uel Moisture L : 60 meters Unit Value I Non-burnable 4 11.00 - 12.00 1 12.00 - 13.00 2 13.00 - 14.00 31 14.00 - 15.00 11	egend s: percent Freq 19,923 10,310 26,676 12,387 19,121 1
s e 1	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00 9.00 - 10.00 10.00 - 11.00 No Data	E Legend Inits: percent Freq 49,923 50 19,791 165,792 282,585 277 2,466	10 Hr F Resolution	uel Moisture L c 60 meters Unit Value I Non-burnable 4 11.00 - 12.00 1 12.00 - 13.00 2 13.00 - 14.00 31 14.00 - 15.00 11 15.00 - 16.00 No Data	Legend s: percent Freq 19,923 10,310 26,676 12,387 19,121 1 2,466
s e ł	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable 6.00 - 7.00 7.00 - 8.00 8.00 - 9.00 9.00 - 10.00 10.00 - 11.00 No Data	E Legend Inits: percent Freq 49,923 50 19,791 165,792 282,585 277 2,466	10 Hr F Resolution	uel Moisture L : 60 meters Unit Value I Non-burnable 4 11.00 - 12.00 1 12.00 - 13.00 2 13.00 - 14.00 31 14.00 - 15.00 11 15.00 - 16.00 No Data	Legend s: percent Freq 19,923 10,310 26,676 12,387 19,121 1 2,466
s e J	1 Hr Resoluti	Fuel Moisture ion: 60 meters U Value Non-burnable 6.00 - 7.00 7.00 - 8.00 9.00 - 9.00 9.00 - 10.00 10.00 - 11.00 No Data	E Legend Inits: percent Freq 49,923 50 19,791 165,792 282,585 277 2,466	10 Hr F Resolution	uel Moisture L : 60 meters Unit Value I Non-burnable 4 11.00 - 12.00 1 12.00 - 13.00 2 13.00 - 14.00 31 14.00 - 15.00 11 15.00 - 16.00 No Data eriod Spot	Legend s: percent Freq 19,923 10,310 26,676 12,387 19,121 1 2,466 Prob Delay

%ile	MINERC	1 Hour Five	TO HOUF FIN	100 Hour FM	Herb Fivi		Burn Period	Spot Prob	Delay
96	33	6.7	7.9	14.0	166.	178.	360	0.15	0
89	30	7.6	9.1	15.2	174.	184.	300	0.10	0
76	26	8.2	10.1	15.9	170.	180.	240	0.05	0
67	24	8.9	11.0	16.7	171.	182.	180	0.01	0
58	22	9.7	12.2	17.3	170.	181.	120	0.00	0

Forest Fires

Duck Lake (MI) Fire, May 24/25, 2012 21,135 Acres Burned Bruno Fire (AK), June 29, 2015 15,131 Acres Burned over 2 weeks

Best viewed with 800 X 600 or greater screen resolution.

State Selection Map

Hourly RAWS data downloaded from wrcc.dri.edu/wraws, edited to insure proper hour used as daily obs ("O" record) and processed with FFPlus 4.1

Data	Weather Fi	res Options B	stch Wind	low Help					
	Climato Event Li Fire Dar	rlogy ocator iger Projections			0 C+ C 10	<u>D</u>	<u>R:</u>		
Fu	Hourly	Data Analysis	÷	Hourly List	ings				
Data	Pocket Season	Card Reports	÷	Diurnal Graphs FarSite Exports		us\FuelMoisture	us\FuelMoistureF13		
Desi	Winds			Nelson Dea	d Fuel Moistur	15	Hourly V	alues	
Ac	Term		•	Hourly Eve	nt Locator		Compare	e with daily NFDRS	
	View OI	View Observations		Calculated	SOW/WetFlag	3	Fires Ana	alysis	
	NFDRS	Calculator		el 🔄	thru				
	Custom	Yearly Initialization	n	stober 💌	31 🕂				
	L LIGNO M	ампату теаго чепау	٥						
	nalysis Period Length (Days)			Fire Associations	ons		_		
SIG/S	tation Metadal	ta:							
	StationID	Name	NFDR	S Fuel Model	Use 88 Mode	Slope Cl	ass Climate Cla	\$\$	
	abok	BIRCH CREEK	G - Short-N	eedle (Heavy Dead		1	2	(SERMO
)U	S
4								+ MILINI	OF AGREED

FWI Daily and Hourly data downloaded from <u>akff.mesowest.org</u>

•••	Covernioad data Alaska Fir. x				Robert
	G 🗋 akff.mesowest.org/download/	☆ 🕫	₹		🗖 💥 👪 😑
Apps	📌 Bookmarks 🛛 G AKFF Code Edits 📄 AKFF Wx Eduts 🗍 🔤 AKFF MapLite			39	Other Bookmarks
≡	MesoWest Alaska Fire & Fuels				Jan 25 2016 10:30:40 AKST

Download AKFF data

Download CSVs of AKFF observations, indicies, and metadata using the tools below.

Station Selection		
Station ID	*	Alaska station short ID. One station only.
Fire Management Zone/Area	All	\$
Fire Weather Zone	All	\$
Predictive Service Area	All	\$

What kind of data do you want to download?

Metadata	Daily/Forecast	Hourly

DAILY OBSERVATIONS

Choose start and end dates and forecast characteristics for daily observations and indices.

Start Date	2015 🗘 October	\$ 31 \$							
End Date	2015 🗘 October	\$ 31 \$							
Forecasts?	No Forecast Forecasts?			If you war the leadti forecast v leadtime.	nt forecasts inclue me, and we'll grai we have for each	ded, select b every date for that			
Authorize	Authorize and download								
*	Ŷ				Ē	*			

Comparing Daily Fine Fuel Moistures 2013 Salcha (AK) RAWS

FWI and CFFDRS Diurnal Fuel Moisture Trends 1hr (NFDRS) and Grass Fuel Moisture (CFFDRS)

2011 Fernberg Season Severity Live Herbaceous Moisture & BUI

2011 Fernberg Season Severity Live Woody Moisture and BUI

Live Fuel Moisture Bogus Creek Fire June 6, 2015

GSI/LFI Identifies a greenup threshold and estimates greenup date from weather observations

Duff Moisture Code and Live Fuel Moisture 2015 Hogatza Raws (AK)

How do changes in Dead and Live Fuel Moisture Estimates Affect Fire Behavior Predictions

Dead Fine Fuel Moisture

- 2-4% increase in 1hr fuel moisture by changing from Fosberg to Nelson in our regions, before any adjustments due to canopy shading
- Especially important for fuel models with low moisture of extinction

Live Fuel Moisture

- Estimates for Woody Live Fuel Moistures generally above measured values during the growing season
- Herbaceous moistures much higher than common inputs for fire behavior analysis
- Especially important factor above or below critical threshold of 90% to 95% for dynamic fuel models.

Nomogram for Fuel Model 6

- 4% change in dead fuel moisture, due primarily to change to the Nelson Model, would decrease HPA by nearly 20% alone
- Additional shading factors could add 2-4% more
- What does that do to spread rates in WFDSS analyses

Mississippi Fire, AK 52,539 ac, August 12, 2013 FFMC **90 (9%)**, DMC **80 (65%)**, DC **497** HFM **112%**, WFM **130%**

Incident	Analysis	Analysis Date	Time
117 Mississippi	08-12 Calib 3d-12h	08/12/2013	17:00
Wind Sp	eed Direction	RAWS Station	
3 mph	256° azimuth	500751 - BOLIO	
1 H	r Fuel Moistur	e Legend	
Resolu	tion: 60 meters	Units: percent	
_	Value	Freq	
	Non-burnable	93,180	
	12.00 - 13.00	267,244	
	13.00 - 14.00	108,799	
	14.00 - 15.00	41,698	
	15.00 - 16.00	1,073	
	No Data	5,986	

FFMC 94, FFMC% (10hr) 6-7%, BUI 120 (100th)

10 Hr Fuel Moisture Legend Resolution: 90 meters Units: percent Value Freq Non-burnable 2,866 9.00 - 10.00 1,248 10.00 - 11.00 35,869 11.00 - 12.00 619

FFMC and Timelag Fuel Moisture

- FFMC represents shaded litter fuels with about a 10 hr timelag (5 to 16 hrs)
- An equivalent fuel moisture % can be estimated and used in predictions.

10 Hr	5	6	7	8	9	10	11	12	13	14
FFMC	96	94	93	91	90	88	87	86	84	83
Based on 20 years of daily estimates of FFMC values and manual										
measurement of NFDRS 10hr "Sticks" in Michigan (1975-1995)										

DMC to Fuel Moisture Equivalent Conversion

Juli Moisture Code (Divid

National Standard

Duff Moisture Code and Herbaceous Fuel Moisture 2015 Hogatza (AK) RAWS

Fairbanks-Ballaine - Tea, Labrador

	05-01	05-15	06-01	06-15	07-01	07-15	08-01	08-15	09-01	09-15	10-01	10-15
2015			100	109				104				
Avg	94		92	104	132	127	109	98	94	96		
Low	94		89	91	121	110	106	92	94	96		

FFMC and DMC can help inform inputs

FFMC, converted to fuel moisture could inform 10hr, with 1 hr 2% lower

DMC, converted to a fuel moisture, could help suggest current Herbaceous fuel moisture inputs

Generate ERC Classes

33

30

26

24

22

Min ERC 1 Hour

8.9

9.7

11.0

12.2

16.7

17.3

%ile

96

89

76

67

58

rted to	Model 1 H	our FM	10 Hour FM	100 Hour FM	Herb FM	Woody FM
	default	5	7	16	169	18(
with 1 hr	FFMC 94	, FFM	C% (10h	r) 6-7%, E	BUI 120	(100th)
	Wildland Fi Decision Sup	re port System	€ <u>Help</u>	Wildland Decision	Fire Support System	€ <u>Help</u>
ted to a	ncident Analysis Pagami 09-11 Review reek conditioning d Wind Speed Dir 8 mph 328	8h S/R v2 1 ay ection RAV 3° azimuth 210	Analysis Tim Date 16:0 09/11/2011 VS Station 509 - ELY MN	e Incident Analysis DOPagami 09-11 Rev Creek conditionin Wind Speed 8 mph	iew 8h S/R v2 1 g day Direction RAV 328° azimuth 210	Analysis Time Date 16:00 09/11/2011 VS Station 509 - ELY MN
, could	1 Hr Fuel	Moisture L	egend	10 Hr F	uel Moisture I	egend
current	Resolution: 60	meters Unit Value	s: percent Frea	Resolution	: 60 meters Unit Value I	s: percent Freq
	No	n-burnable 4 6.00 - 7.00	9,923 50		Non-burnable 4 11.00 - 12.00 1	9,923 0,310
·		7.00 - 8.00 1 8.00 - 9.00 16	9,791 5,792		12.00 - 13.00 2 13.00 - 14.00 31	6,676 2,387
uts		.00 - 10.00 28 .00 - 11.00 No Data	2,585 277 2.466		14.00 - 15.00 11 15.00 - 16.00 No Data	9,121 1 2,466
es			2,400		No Data	2,400
our FM 10 Hou	r FM 100 Hou	FM Her	b FM Wood	dy FM Burn Pe	eriod Spot	Prob Delay
6.7 7.9	9 14.0	1	66. 1	78. 360	0.1	15 0
7.6 9.	1 15.2	1	74. 18	34. 300	0.1	10 0

182.

181.

180

120

0.01

0.00

0

0

171.

170.

Comparing Buildup Index and Energy Release Component 2015 Hogatza (AK) RAWS

2011 Fernberg Season Severity Energy Release Component & Buildup Index

Spincich Lake (MI) RAWS BUI 2002-2015 Climatology with Avg ERCg

Salcha Seasonal Severity Average ERC-G, DMC, and BUI Trends

KBDI and DC at Atlanta, MI from 2006

Trends for DC and KBDI are very similar, though DC produces higher values overall

Drought Code and KBDI

Keetch-Byram Drought Index (KBDI) and Drought Code (DC) have only a slightly positive correlation with

fire occurrence in Michigan and MODIS detection in Alaska

My Assumptions and Conclusions

- These comparisons represent only weather conditions and fuel moisture estimates from Alaska and the Lake States.
- NFDRS '16 makes some very important advances for simplicity of operation over older versions
 - There are concerns that the Nelson Fuel Moisture model is raising Fine Fuel Moisture estimates to a level that impacts fire behavior analysis in our regions.
- New live Fuel Moisture estimates are significantly higher in our regions. "Current" estimates probably can't be directly applied as inputs to fire behavior analysis in the growing season
- It is likely that FFMC and DMC can help inform these fuel moisture inputs for fire behavior analysis providing objective "current" source information.

Mack Lake (MI), May 5, 1980

DMC and Dead Fuel Moisture 2015 Hogatza (AK) RAWS

-100h -1000h -DMC

DMC Equivalent & Dead Fuel Moisture

2015 Hogatza (AK) RAWS

Drought Code (DC) & 1000h FM 2015 Hogatza Raws (AK)

Initial Spread Index, Spread Component, Ignition Component 2015 Hogatza (AK) RAWS

Fire Weather Index Compared to NFDRS Burning Index 2015 Hogatza (AK) RAWS

WFDSS Analysis Fuel Moisture Inputs

STFB (1 conditioning day) and FSPro (8/1-10/15) analyses for Pagami Creek Fire, 9/11/11.

Default FWI fuel moistures suggest much drier fuelbeds

Generate ERC Classes

	N	/lodel	1 Hour Fl	10 Hour	FM 10	0 Hour FM	1 Herb Fl	M Woody	FM
	d	efault	5	7		16	169	180	
	EF	MC	94, FF	MC% (1	0hr)	6-7%, I	DMC 8	5 (100t	h)
) Wildla Decisi	and Fire on Support Sys	tem 🕑		Wildland Decision	l Fire Support Syste	em 🕑	<u>Help</u>
F	ncident Pagami Creek	Analy 09-11 conditi Wind Spe 8 mph	sis Review 8h S/R v2 oning day ed Direction 328° azimuth	Analysis 1 Date 09/11/2011 RAWS Station 210509 - ELY MN	Time Incid 16:00Paga Cree	dent Analysis ami 09-11 Re ek conditioni Wind Speed 8 mph	view 8h S/R v2 1 ng day Direction 328° azimuth	Analysis Date 09/11/2011 RAWS Station 210509 - ELY MN	Time 16:00
	1 Hr Fuel Moisture Legend 10 Hr Fuel Moisture Legend								
		Resolu	tion: 60 meters	Units: percent		Resolution	n: 60 meters	Units: percent	
			Value Non-burnabl 6.00 - 7.0 7.00 - 8.0 8.00 - 9.0 9.00 - 10.0 10.00 - 11.0 No Data	Freq e 49,923 0 50 0 19,791 0 165,792 0 282,585 0 277 2,466			Value Non-burnable 11.00 - 12.00 12.00 - 13.00 13.00 - 14.00 14.00 - 15.00 15.00 - 16.00 No Data	Freq 49,923 10,310 26,676 312,387 119,121 1 2,466	

%ile	Min ERC	1 Hour FM	10 Hour FM	100 Hour FM	Herb FM	Woody FM	Burn Period	Spot Prob	Delay
96	33	6.7	7.9	14.0	166.	178.	360	0.15	0
89	30	7.6	9.1	15.2	174.	184.	300	0.10	0
76	26	8.2	10.1	15.9	170.	180.	240	0.05	0
67	24	8.9	11.0	16.7	171.	182.	180	0.01	0
58	22	9.7	12.2	17.3	170.	181.	120	0.00	0

AK Calibrations color maps for spatial views

Class	LOW	MOD	HIGH	VHIGH	EXT
Max Temp	<50°	50° to 59.9°	60° to 69.9°	70° to 79.9°	80°+
Min RH	51% to 100%	41% to 50%	31% to 40%	21% to 30%	<20%
FFMC	0 to 79.9	80 to 85.9	86 to 88.9	89 to 91.9	92+
DMC	0 to 39.9	40 to 59.9	60 to 79.9	80 to 99.9	100+
DC	0 to 149.9	150 to 349.9	350 to 399.9	400 to 449.9	450+
ISI	0 to 1.9	2 to 4.9	5 to 7.9	8 to 10.9	11+
BUI	0 to 39.9	40 to 59.9	60 to 89.9	90 to 109.9	110+
FWI	0 to 8.9	9 to 17.9	18 to 27.9	28 to 34.9	35+

Think of what each item speaks to:

- FFMC to ignition
- DMC to lightning ignition, fuel availability in duff layer
- DC to holdover fire, mop-up difficulty
- ISI to spread potential
- BUI to overall fuel consumption
- FWI to fire intensity & control difficulty

WILLE

0601_GISRender

FFMC 92(8-9%)

pointe

0601_GISRender

220

1 Hr Fuel Moisture Legend

Resolution	n: 30 meters 🛛	Units: percent
	Value	Freq
	Non-burnable	37,085
	6.00 - 7.00	18,947
	7.00 - 8.00	24,926
	8.00 - 9.00	119,580
	9.00 - 10.00	98,201
	No Data	483

7-Day Significant Fire Growth Potential