Document


Title

Soil temperature and water content beneath a surface fire
Document Type: Journal Article
Author(s): G. S. Campbell; J. D. Jungbauer Jr.; K. L. Bristow; Roger D. Hungerford
Publication Year: 1995

Cataloging Information

Keyword(s):
  • laboratory experiments
  • soil temperature
  • surface fires
  • water content
Topic(s):
Record Maintained By:
Record Last Modified: December 13, 2016
FRAMES Record Number: 8535

Description

We report here the results of laboratory and computer simulations designed to supply information on soil temperatures under forest and range fires. Measurements of temperature and water content in a soil column that was heated strongly at the surface showed a consistent pattern of warming and drying. In initially wet soil, temperature rose to around 95 degrees C and remained there until the water content of the soil at that depth dropped below about 0.02 m3 m-3. When the soil was initially dry, the temperature increased more rapidly, but even the moisture present in air-dry soil was sufficient to slow the rate of temperature rise when temperatures reached 90 degrees C. A linked-transport model, which simultaneously computes changes in temperature and water content, simulated the main features of heat and water flow in a soil column heated to high temperature. There were no consistent deviations of measured from modeled temperatures, but the water content simulations consistently showed a greater buildup of moisture ahead of the heating front than did the measurements, and less drying of the soil in the heated layers when the initial soil water content was low. Soils from sand to clay, and with differing mineralogies, water contents, and bulk densities were used to compare measurements and simulations. The model performed well in all cases. Since the temperature simulations are reasonable, the model appears suitable for predicting fire effects in the field.

Online Link(s):
Citation:
Campbell, G. S.; Jungbauer J. D., Jr.; Bristow, K. L.; Hungerford, R. D. 1995. Soil temperature and water content beneath a surface fire. Soil Science 159(6): 363-374.