Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies
Document Type: Journal Article
Author(s): Miguel A. Belenguer-Plomer; Mihai A. Tanase; Angel Fernandez-Carrillo; Emilio Chuvieco
Publication Year: 2019

Cataloging Information

  • area burned
  • backscatter coefficient
  • burned area detection
  • Landsat
  • MODIS - Moderate Resolution Imaging Spectroradiometer
  • random forests
  • RXD - Reed-Xiaoli detector
  • SAR - synthetic aperture radar
  • Sentinel 1
  • Sentinel 2
  • VIIRS - Visible Infrared Imaging Radiometer Suite
Record Maintained By:
Record Last Modified: November 5, 2019
FRAMES Record Number: 58917


This paper presents a burned area mapping algorithm based on change detection of Sentinel-1 backscatter data guided by thermal anomalies. The algorithm self-adapts to the local scattering conditions and it is robust to variations of input data availability. The algorithm applies the Reed-Xiaoli detector (RXD) to distinguish anomalous changes of the backscatter coefficient. Such changes are linked to fire events, which are derived from thermal anomalies (hotspots) acquired during the detection period by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Land cover maps were used to account for changing backscatter behaviour as the RXD is class dependent. A machine learning classifier (random forests) was used to detect burned areas where hotspots were not available. Burned area perimeters derived from optical images (Landsat-8 and Sentinel-2) were used to validate the algorithm results. The validation dataset covers 21 million hectares in 18 locations that represent the main biomes affected by fires, from boreal forests to tropical and sub-tropical forests and savannas. A mean Dice coefficient (DC) over all studied locations of 0.59 ± 0.06 (± confidence interval, 95%) was obtained. Mean omission (OE) and commission errors (CE) were 0.43 ± 0.08 and 0.37 ± 0.06, respectively. Comparing results with the MODIS based MCD64A1 Version 6, our detections are quite promising, improving on average DC by 0.13 and reducing OE and CE by 0.12 and 0.06, respectively.

Online Link(s):
Belenguer-Plomer, Miguel A.; Tanase, Mihai A.; Fernandez-Carrillo, Angel; Chuvieco, Emilio. 2019. Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sensing of Environment online early.