A review of a new generation of wildfire-atmosphere modeling
Document Type: Journal Article
Author(s): A. Bakhshaii; Edward A. Johnson
Publication Year: 2019

Cataloging Information

  • ARPS - Advanced Regional Prediction System
  • CAWFE - Coupled Atmosphere-Wildland Fire Environment Model
  • DEVS-Fire
  • finite difference scheme
  • finite volume
  • ForeFire/Meso-NH
  • WFDS - Wildland-Urban Interface Fire Dynamics Simulator
  • wildfires
  • WRF-Fire
Record Maintained By:
Record Last Modified: May 30, 2019
FRAMES Record Number: 57917


One of the first significant developments in wildfire modeling research was to introduce heat flux as wildfire line intensity (kW·m–1). This idea could be adapted to using weather station measurements, topography, and fuel properties to estimate rate of fire spread, shape, and intensity. This review will present, in an accessible manner, the next evolution in wildfire models. The new generation models use mechanistic combustion models and large-eddy simulation (LES) to define the flaming combustion and the mechanism of rate of spread. These wildfire models are then coupled to a computational fluid dynamics (CFD) or mesoscale weather model. In other words, wildfire models become weather and climate models with add-in fuel and terrain models. These coupled models can use existing fire and weather physics or developed noncoupled models with a coupling mechanism. These models are tailored for specific spatial and temporal scales.

Online Link(s):
Bakhshaii, A.; Johnson, Edward A. 2019. A review of a new generation of wildfire-atmosphere modeling. Canadian Journal of Forest Research 49(6):565-574.