Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Journal Article
Author(s): Ewane B. Ewane; Heon-Ho Lee
Publication Date: 2016

Sediments were collected from four slow vegetation recovery plots, six fast vegetation recovery plots and five unburned plots at a post-fire site on a rainfall event basis and sorted for size distribution. The aim was to evaluate the effects of vegetation cover, soil aggregate stability, slope and rainfall intensity on sediment size distribution, transport selectivity and erosion processes between the burned and unburned treatment plots. Sediment detachment and transport mechanisms and the particle size transport selectivity of the eroded sediment were assessed based on enrichment ratios (ER) and mean weighted diameter (MWD) methods. The most eroded particle size class in all treatment plots was the 125-250 mm class and, generally, the percentage of eroded particle sizes did not increase with slope and rainfall intensity. Higher MWD of the eroded sediment was related to a higher percentage of bare soil exposed and gravel content associated with high soil burn severity and soil disaggregation in the slow vegetation recovery plots. The enrichment of finer clay silt particle sizes increased with varying maximum 30-min rainfall intensity (I30) in the slow vegetation recovery plots, and reflected increased aggregate breakdown and transport selectivity, whereas no good relationship was found in the fast vegetation recovery and unburned plots with varying I30. A minimum I30 of <3.56 mm h-1 and a maximum of 10.9 mm h-1 were found to be the threshold rainfall intensity values necessary for aggregate breakdown and transport of finer particles by both rainsplash and rainflow in the slow vegetation recovery plots, whereas the response was weak in the fast vegetation recovery and unburned plots following varying I30 dominated only by rainsplash transport closer to the plot sediment collector. The results show that higher vegetation cover in the fast vegetation recovery and unburned plots reduces erosive rainfall energy by 5.6- and 17.7-fold respectively, and runoff energy by 6.3- and 21.3-fold respectively, limiting aggregate breakdown and transport selectivity of finer particles compared with the slow vegetation recovery plots. Journal compilation © CSIRO 2016

Online Links
Citation: Ewane, Ewane B., Lee, Heon-Ho. 2016. Effects of vegetation cover on sediment particle size distribution and transport processes in natural rainfall conditions on post-fire hillslope plots in South Korea. Soil Research 54(8):937-948.

Cataloging Information

Topics:
Regions:
Keywords:
  • aggregate stability
  • aggregation
  • Eroded Soil
  • Erodibility
  • flow
  • forest fires
  • post-fire recovery
  • runoff
  • runoff
  • soil erosion
  • soil erosion
  • soil permeability
  • soil texture
  • Soil-Erosion Processes
  • South Korea
  • Suspended Sediment
  • vegetation recovery
  • water repellency
  • wildfire
Tall Timbers Record Number: 33527Location Status: Not in fileCall Number: AvailableAbstract Status: Fair use, Okay
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 55487

This bibliographic record was either created or modified by Tall Timbers and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of Tall Timbers.