Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Journal Article
Author(s): Christel M. Van Eck; João Pedro Nunes; Diana C. S. Vieira; Saskia D. Keesstra; Jan Jacob Keizer
Publication Date: July 2016

Forest fires are a recurrent phenomenon in Mediterranean forests, with impacts for human landscapes and communities, which must be understood before they can be managed. This study used the physically based Limburg Soil Erosion Model (LISEM) to simulate rainfall-runoff response, under soil water repellent (SWR) conditions and different stages of vegetation recovery. Five rainfall-runoff events were selected, representing wet and dry conditions, spread over two years after a wildfire which burned eucalypt and maritime pine plantations in the Colmeal experimental micro-catchment, central Portugal. Each event was simulated using three Leaf Area Index (LAI) estimates: indirect field-based measurements (TC-LAI), NDVI-based estimates derived from Landsat-5 TM and Landsat-7 ETM+ imagery (NDVI-LAI), and the LAI of a fully restored canopy to test model sensitivity to interception parameters. LISEM was able to simulate events in relative terms but underestimated peak runoff (r2 = 0.36, mean error = -31%, and NSE = -0.15) and total runoff (r2 = 0.52, mean error = -15% and NSE = 0.09), which could be related to the presence of SWR or saturated areas, according to pre-rainfall soil moisture conditions. The model performed better for individual hydrographs, especially under wet conditions. Modelling the full-cover scenario showed minor sensitivity of LISEM to the observed changes in LAI. NDVI-LAI data gave a close to equal model performance with TC-LAI and therefore can be considered a suitable substitute for ground-based measurements in post-fire runoff predictions. However, more attention should be given to representing pre-rainfall soil moisture conditions and especially the presence of SWR. Copyright © 2016 John Wiley & Sons, Ltd.

Online Links
Citation: Van Eck, C. M., J. P. Nunes, D. C. S. Vieira, S. Keesstra, and J. J. Keizer. 2016. Physically-based modelling of the post-fire runoff response of a forest catchment in central Portugal: using field versus remote sensing based estimates of vegetation recovery. Land Degradation & Development, v. 27, no. 5, p. 1535-1544. 10.1002/ldr.2507.

Cataloging Information

Regions:
Keywords:
  • Europe
  • fire management
  • forest management
  • hydrology
  • LISEM
  • Portugal
  • post fire recovery
  • post-fire hydrology
  • remote sensing
  • remote sensing
  • runoff
  • Runoff Modelling
  • soil erosion
  • vegetation recovery
  • vegetation surveys
  • wildfires
Tall Timbers Record Number: 32978Location Status: Not in fileCall Number: AvailableAbstract Status: Fair use, Okay
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 55073

This bibliographic record was either created or modified by Tall Timbers and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of Tall Timbers.