Document


Title

Wildland fire emissions, carbon, and climate: wildfire-climate interactions
Document Type: Journal Article
Author(s): Yongqiang Liu; Scott L. Goodrick; Warren E. Heilman
Publication Year: 2014

Cataloging Information

Keyword(s):
  • air quality
  • carbon
  • emission
  • feedback to climate
  • fire management
  • future fire projection
  • radiative forcing
  • smoke management
  • wildfire
  • wildfires
Record Maintained By:
Record Last Modified: March 7, 2019
FRAMES Record Number: 53014
Tall Timbers Record Number: 30298
TTRS Location Status: Not in file
TTRS Call Number: Available
TTRS Abstract Status: Fair use, Okay, Reproduced by permission

This bibliographic record was either created or modified by the Tall Timbers Research Station and Land Conservancy and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of the Tall Timbers Research Station and Land Conservancy.

Description

Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire-climate interactions. Findings from studies published in recent years have remarkably increased our understanding of fire-climate interactions and improved our capacity to delineate probable future climate change and impacts. Fires are projected to increase in many regions of the globe under a changing climate due to the greenhouse effect. Burned areas in the western US could increase by more than 50% by the middle of this century. Increased fire activity is not simply an outcome of the changing climate, but also a participant in the change. Smoke particles reduce overall solar radiation absorbed by the Earth's atmosphere during individual fire events and fire seasons, leading to regional climate effects including reduction in surface temperature, suppression of cloud and precipitation, and enhancement of climate anomalies such as droughts. Black carbon (BC) in smoke particles displays some different radiation and climate effects by warming the middle and lower atmosphere, leading to a more stable atmosphere. BC also plays a key role in the smoke-snow feedback mechanism. Fire emissions of CO2, on the other hand, are an important atmospheric CO2 source and contribute substantially to the global greenhouse effect. Future studies should generate a global picture of all aspects of radiative forcing by smoke particles. Better knowledge is needed in space and time variability of smoke particles, evolution of smoke optical properties, estimation of smoke plume height and vertical profiles and their impacts on locations of warming layers, stability structure, clouds and smoke transport, quantification of BC emission factors and optical properties from different forest fuels, and BC's individual and combined roles with organic carbon. Finally, understanding the short-and long-term greenhouse effect of fire CO2 emissions, increased capacity to project future fire trends (especially mega-fires), with consideration of climate-fuel-human interactions, and improved fire weather and climate prediction skills (including exploring the SST-fire relations) remain central knowledge needs. Published by Elsevier B.V.

Citation:
Liu, Y. Q., S. Goodrick, and W. Heilman. 2014. Wildland fire emissions, carbon, and climate: wildfire-climate interactions. Forest Ecology and Management, v. 317, p. 80-96. 10.1016/j.foreco.2013.02.020.