Skip to main content

FRAMES logo
Resource Catalog

Document

Type: Journal Article
Author(s): Todd J. Hawbaker; Volker C. Radeloff; Susan I. Stewart; Roger B. Hammer; Nicholas S. Keuler; Murray K. Clayton
Publication Date: April 2013

National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland-urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire. © 2013 by the Ecological Society of America. Abstract reproduced by permission.

Online Links
Citation: Hawbaker, T. J., V. C. Radeloff, S. I. Stewart, R. B. Hammer, N. S. Keuler, and M. K. Clayton. 2013. Human and biophysical influences on fire occurrence in the United States. Ecological Applications, v. 23, no. 3, p. 565-582.

Cataloging Information

Regions:
Alaska    California    Eastern    Great Basin    Hawaii    Northern Rockies    Northwest    Rocky Mountain    Southern    Southwest    National
Keywords:
  • fire management
  • fire size
  • fire suppression
  • forest management
  • MODIS active fires
  • wildfire risk
  • wildfires
Tall Timbers Record Number: 28636Location Status: In-fileCall Number: Journals - EAbstract Status: Fair use, Okay, Reproduced by permission
Record Last Modified:
Record Maintained By: FRAMES Staff (https://www.frames.gov/contact)
FRAMES Record Number: 51690

This bibliographic record was either created or modified by Tall Timbers and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of Tall Timbers.