Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape
Document Type: Journal
Author(s): Sean A. Parks ; Marc-André Parisien ; Carol L. Miller
Publication Year: 2011

Cataloging Information

  • Abies concolor
  • Abies magnifica
  • Calocedrus decurrens
  • coniferous forests
  • elevation
  • fire frequency
  • fire management
  • fire regime
  • fire regimes
  • fire size
  • forest management
  • fuel moisture
  • ignition
  • ignitions
  • incense cedar
  • land management
  • lodgepole pine
  • Pinus contorta
  • Pinus lambertiana
  • Pinus ponderosa
  • ponderosa pine
  • rate of spread
  • red fir
  • Sierra Nevada
  • spatial scale
  • statistical analysis
  • sugar pine
  • topography
  • topography
  • white fir
  • wildfires
  • wind
Record Maintained By:
Record Last Modified: April 19, 2019
FRAMES Record Number: 50084
Tall Timbers Record Number: 26620
TTRS Location Status: In-file
TTRS Call Number: Journals - I
TTRS Abstract Status: Fair use, Okay, Reproduced by permission

This bibliographic record was either created or modified by the Tall Timbers Research Station and Land Conservancy and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of the Tall Timbers Research Station and Land Conservancy.


We examined the scale-dependent relationship between spatial fire likelihood or burn probability (BP) and some key environmental controls in the southern Sierra Nevada, California, USA. Continuous BP estimates were generated using a fire simulation model. The correspondence between BP (dependent variable) and elevation, ignition density, fuels and aspect was evaluated at incrementally increasing spatial scales to assess the importance of these explanatory variables in explaining BP. Results indicate the statistical relationship between BP and explanatory variables fluctuates across spatial scales, as does the influence of explanatory variables. However, because of high covariance among these variables, it was necessary to control for their shared contribution in order to extract their 'unique' contribution to BP. At the finest scale, fuels and elevation exerted the most influence on BP, whereas at broader scales, fuels and aspect were most influential. Results also showed that the influence of some variables tended to mask the true effect of seemingly less important variables. For example, the relationship between ignition density and BP was negative until we controlled for elevation, which led to a more meaningful relationship where BP increased with ignition density. This study demonstrates the value of a multi-scale approach for identifying and characterising mechanistic controls on BP that can often be blurred by strong but correlative relationships. © IAWF 2011. Reproduced from the International Journal of Wildland Fire (Sean A. Parks, et al, 2011) with the kind permission of CSIRO Publishing on behalf of the International Association of Wildland Fire.

Online Link(s):
Parks, S. A., M.-A. Parisien, and C. Miller. 2011. Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape. International Journal of Wildland Fire, v. 20, no. 7, p. 815-828. 10.1071/WF10051.