Document


Title

Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications
Document Type: Journal Article
Author(s): P. E. Higuera; M. L. Chipman; J. L. Barnes; M. A. Urban; F. S. Hu
Publication Year: 2011

Cataloging Information

Keyword(s):
  • air temperature
  • arctic
  • boreal forests
  • carbon
  • charcoal
  • charcoal analysis
  • climate change
  • climatic change
  • environmental change
  • fire management
  • fire management
  • fire regimes
  • flammability
  • HRV - historical range of variability
  • lakes
  • Noatak National Preserve
  • pollen
  • pollen analysis
  • precipitation
  • sedimentation
  • shrub tundra
  • statistical analysis
  • tundra
  • tundra
  • vegetation surveys
  • wildfires
Region(s):
Record Maintained By:
Record Last Modified: June 1, 2018
FRAMES Record Number: 49905
Tall Timbers Record Number: 26394
TTRS Location Status: In-file
TTRS Call Number: Journals - E
TTRS Abstract Status: Okay, Fair use, Reproduced by permission

This bibliographic record was either created or modified by the Tall Timbers Research Station and Land Conservancy and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of the Tall Timbers Research Station and Land Conservancy.

Description

Tundra fires have important ecological impacts on vegetation, wildlife, permafrost, and carbon cycling, but the pattern and controls of historic tundra fire regimes are poorly understood. We use sediment records from four lakes to develop a 2000-yr fire and vegetation history in a highly flammable tundra region and compare this history with previously published fire records to examine spatial and temporal variability of tundra burning across Arctic Alaska. The four sites span a modern climatic gradient in the Noatak National Preserve, from warmer, drier down-valley locations to cooler, generally moister up-valley locations. Modern vegetation varies from herb-to shrub-dominated tundra from down-to up-valley sites, and pollen data suggest that this spatial pattern in vegetation persisted over the past two millennia. Peaks in macroscopic charcoal accumulation provide estimates of fire-event return intervals (FRIs), which did not vary significantly at millennial time scales but did vary across space. Down-valley sites burned relatively frequently over the past two millennia, with median FRIs of 150 years (95% CI 101-150) and FRI distributions statistically similar to those from ancient shrub tundra and modern boreal forest. At up-valley sites FRIs were significantly longer than those at down-valley sites, with a median FRI of 218 years (95% CI 128-285). These differences likely reflect the cooler growing-season temperatures and lower evaporative demand at up-valley sites, but local-scale variability in vegetation may have also shaped tundra fire regimes. Comparisons with other long-term fire records in Alaska reveal that the tundra biome can sustain a wide range of burning, with individual FRIs from as low as 30 years to more than 5000 years. These records together indicate that frequent tundra burning has occurred under a range of climatic and vegetation scenarios. The variety of tundra fire histories within Alaska suggests that the ecological impacts of tundra burning likewise vary widely, with important implications for wildlife-habitat maintenance and for the responses of tundra biophysical and biogeochemical processes to climatic change. © 2011 by the Ecological Society of America. Abstract reproduced by permission.

Online Link(s):
Citation:
Higuera, P. E., M. L. Chipman, J. L. Barnes, M. A. Urban, and F. S. Hu. 2011. Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications. Ecological Applications, v. 21, no. 8, p. 3211-3226.