Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area
Document Type: Journal Article
Author(s): Fermín J. Alcasena; Michele Salis; Alan A. Ager; Bachisio Arca; Domingo Molina; Donatella Spano
Publication Year: 2015

Cataloging Information

  • fire exposure
  • fire intensity
  • fire management
  • fire risk
  • highly valued resources
  • Italy
  • landscape ecology
  • Mediterranean habitats
  • MTT - Minimum Travel Time
  • Sardinia
  • statistical analysis
  • wildfires
  • International
Record Maintained By:
Record Last Modified: June 1, 2018
FRAMES Record Number: 19685
Tall Timbers Record Number: 30819
TTRS Location Status: Not in file
TTRS Call Number: Available
TTRS Abstract Status: Okay, Fair use, Reproduced by permission

This bibliographic record was either created or modified by the Tall Timbers Research Station and Land Conservancy and is provided without charge to promote research and education in Fire Ecology. The E.V. Komarek Fire Ecology Database is the intellectual property of the Tall Timbers Research Station and Land Conservancy.


We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km2 located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.

Online Link(s):
Alcasena, Fermín J.; Salis, Michele; Ager, Alan A.; Arca, Bachisio; Molina, Domingo; Spano, Donatella. 2015. Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area. Environmental Management 55(5):1200-1216.