Early Season Forecasting of Fire Activity in Alaska

Paul A. Duffy

Why is Forecasting Important?

 Goal of forecasting is to provide managers with one more piece of information that they can use to make decisions

• Early season forecasts can be used to ensure necessary resources are made available to the extent possible

CLIMATE 2 What are the relevant spatial and temporal scales? EGETATION FIRE 3

FRE

Obvious link between climate/weather and fire during the summer

Can the early season atmospheric circulation help develop a forecast?

Estimation Model Development

- The response of interest is annual area burned for the entire state
- Why this?
- Large enough region that we can more easily ignore the ignition component

Statewide Fire Scars for 1940-2011

Statistical Model Development

- Response: log(Annual Area Burned)
- 7 Explanatory Variables:
 - Monthly temperatures (April, May, June, July) and precipitation (June) from Western Region Climate Center
 - Teleconnection indices from PDO (JISAO) and East Pacific NOAA-Climate Prediction Center
- R-squared for the model is 0.79

Observed and Estimated Area Burned for 1950-2003

Building Predictive Models

- Next step is to apply GBM approach using "pre-season" variables
- Construct a statistical model with information from several different teleconnection indices

Atmospheric Teleconnections

- ENSO is probably the most familiar
- Recurring and persistent shift in atmospheric circulation and/or sea surface temperatures

Pacific Decadal Oscillation

* Figure courtesy of Hare IPHC

Building Predictive Models

- Currently, this process is performed monthly for March through August
- Data are available at the end of each month

Building Predictive Models

- Use a stepwise procedure to select the teleconnections to be used for explanatory variables
 - Polar (Jan, Feb avg)
 - East Pacific/North Pacific (Jan to May average)
 - Pacific North American (May)
 - May Temperature

http://www.cpc.ncep. noaa.gov/data/teledo c/pna_tmap.shtml

Current Model

• Advantages

- Works reasonably well
- Relatively simple to interpret

• Disadvantage

No information about where fires are most likely

Gradient Boosting Models

- Stochastic regression tree algorithm used in machine-learning
- Cross-validated model building
- Distribution of forecasts allows for the quantification of uncertainty

* Used the 'gbm' library in R stat software

Histogram of Forecasts Based on May Data

Partial Dependence Plots for GBM model

* Vertical axis shows expected acres as a function of the explanatory variable

Distributions of Cross-Validated Predictions

🕗 xRISA - Mozilla Firefox	
Eile Edit View History Bookmarks Tools Help	
Image: snap.uaf.edu/fire_prediction_tool/	🛧 - C 🚼 - Google 🔎 1
🗋 xRISA 🚼 Neptune	
xrisa +	

Experimental Forecast of Area Burned for Interior Alaska

Forecast Methodology About

The purpose of this experimental forecast is to provide managers with a forecast of the area burned in Interior Alaska for the upcoming fire season. The forecast falls into one of the three categories:

- Low (less than 500,000 acres)
- Moderate (between 500,000 and 1,500,000 acres)
- High (greater than 1,500,000 acres)

Median Forecast for the 2011 season is 450,000 acres (Low) as of the end of July.

292,440 acres have burned as of August 15th

http://fire.ak.blm.gov/content/sitreport/current.pdf

- There is a 61% chance that less than 500,000 acres will burn.
- There is a 39% chance that between 500,000 and 1,500,000 acres will burn.
- There is a 0% chance that more than 1,500,000 acres will burn.

Error Table for Predictions Based on May Data

Historical Performance

- Imagine it is May 2000....
- What type of forecast would this product obtain using only the data from 1950-1999?
- Now use this same approach for 2000-2011

Historical Application of Predictions from May Model

Experimental Spatial Forecast

- We can also extrapolate these point models across space using spatially explicit data sets
- We have spatially explicit monthly temperature and precipitation for roughly 1920 -present

ERROR: stackunderflow OFFENDING COMMAND: ~

STACK: